Our SkyTrain formula is a winning formula

Our SkyTrain formula is a winning formula
When the Evergreen Extension opens on Friday, the Metro Vancouver SkyTrain system will span 79.5 km and be:

I want you to process that for a moment. In just a few days on December 2nd, 2016, Metro Vancouver will have achieved a victory in the rapid transit game among cities in Canada.

That is, we’ll have the longest rail rapid transit system in Canada right here in the Lower Mainland, which also expanded at the fastest rate among Canadian Cities. All the while, at its utilization rates per km, SkyTrain is beating every Light Rail Transit system in Canada and the U.S. in ridership.

Yesterday night I posted an update (see: Yes, the Evergreen Line was cost-efficient) to my 2015 study of Canadian rapid transit projects that looked into the costs of our projects relative to their level of grade-separation. In it I detailed on how some rapid transit projects, despite exhibiting a higher amount of grade-separation, are below the trend line for capital costs relative to amount of grade-separation. That means we are delivering higher-quality transit for the same cost as one might have paid in another Canadian city for a grade-level LRT system.

What doesn’t seem to be well understood in this region is that we are doing well in delivering rapid transit projects with high cost-efficiency and cost-effectiveness, and that there are good reasons for this, related to design choices we make in our projects – including our choice to have full grade-separation.

mark-iii-header

Some of the reasons that extensions of Vancouver’s SkyTrain system have been delivered more cost-efficiently than other rail transit projects in Canada include the following:

Smaller tunnels: the Linear Induction Motor (LIM) technology used on our Expo & Millennium Lines enables lower vehicle heights, which in-turn enables us to use smaller tunnels. Smaller tunnels require smaller tunnel boring machines and are less costly to build. Lower vehicle heights also helped us commission the downtown Dunsmuir Tunnel on the Expo Line for its current transit use. The then-abandoned tunnel accommodated freight trains on a single deck; the tunnel was retrofitted into two decks to accommodate our low-height LIM Expo Line trains. Utilizing the Dunsmuir Tunnel likely saved hundreds of millions of dollars in downtown tunneling costs for rapid transit and ensured that rapid transit had stations to connect to the Burrard and Granville downtown corridors.

Lighter guideways: LIM technology also enables our rail vehicles to be lighter than comparable vehicles with standard rotary motor technology, resulting in lighter guideways that require less material and can be built to support lower weights.

Smaller stations: The driver-less, automated signalling system used by SkyTrain enables our system to provide a high capacity by combining a higher frequency with shorter trains, whereas traditionally signalled systems may require longer trains to maintain cost-efficiency, with each train manned by a driver. This enables our system to have smaller and less costly stations. (The downfall with this is that sometimes stations are configured to be so small that they appear to constrain capacity, although it is debatable whether or not this is actually true – see: Canada Line)

Smaller OMC requirements: Operations & maintenance (OMC) facilities can require lots of land, which is expensive in Metro Vancouver, for storage and maintenance of trains. Our SkyTrain extensions have generally had much smaller OMC requirements for three main reasons:

• The driver-less control system reduces the equipment and space required in the yard
• Driver-less signalling allows trains to be parked at track stubs & sidings when out of service; on a traditional system all trains would return to OMC so that drivers can embark/disembark
• Extending our current systems & technologies reduces/removes the need for additional OMC facilities to accommodate other systems & technologies.

Excellent outcomes: The combination of all of the above factors plus design choices like full grade-sepraration, driverless operation to reduce operating costs, high frequencies, integration with the overall transit network and strong anchors/destinations on the lines results in a ridership and fare revenue outcome that not only makes Vancouver a leader among North American cities, but helps keep the entire transit network stable and sustainable to allow the system to expand further and be even better.

Altogether, these reasons combine to form what I would like to term the SkyTrain formula.

It’s understandable to see that with Vancouver forging a different path than the rest of the country in terms of design choice (other metropolitan areas, except maybe for Montreal, only ever talk about subways and LRTs and nothing else), there’s bound to be lots of criticism, doubt and worry.

However, the numbers do say that at the end of the day, the SkyTrain formula is a winning formula: it has resulted in some of the fastest and most cost-efficient rapid transit expansion in Canada. I think that’s something we need to be proud of – but more than that, it’s also something worthy of attention for all Canadian cities that are looking to build more transit.

SkyTrain technology is not outdated and not proprietary

RE: Critics say SkyTrain technology is outdated – Global News

Pictured above: The new Tozai Line in Sendai, Japan uses SkyTrain technology – and is opening in just 7 days.

Nathan Pachal was incorrect in stating that Bombardier “dictates what we’re going to do in our region” in a recent interview with Global BC, and I couldn’t have been more disappointed at what he said. I couldn’t have been more disappointed with the report either, which claimed and brought attention to SkyTrain technology being “outdated” and a “boutique system is made by only one company.

This is misleading and untrue, and I have proven this many times in my research and advocacy efforts throughout the past few years.

SkyTrain technology is proven, efficient, and used around the world in more than just a handful of cities. The idea that SkyTrain is a single-company offering, and that it’s outdated, comes down to a lot of miscommunication, misinformation and the sheer lack of information in discussion circles here. It’s important to get some perspective, so firstly…

What is “SkyTrain technology”?

Used in our Expo and Millennium Lines, SkyTrain technology basically comes down to two unique aspects:

  1. Automatic train control (ATC)
  2. Linear induction motor (LIM) propulsion

See: NEARLY ONE IN FOUR METRO CITIES HAS AT LEAST ONE AUTOMATED LINE

Longest metro systems
The world’s longest automated metro systems are in major global cities including Dubai, Singapore, Paris and Tokyo, among others.

The former (automatic train control) has become the global standard in rapid transit, with more than 1 in 4 cities now having at least one automated metro line as part of their system, according to the Automated Metros Observatory. There are 732km of automated metro lines, and the observatory expects this to triple in the next 10 years.

I can imagine that the latter (LIM propulsion) has become the popular subject of contention – since only 5 systems have been built if you only count the systems installed by Bombardier.

However, if you count all of the other systems offered by other companies, LIM technology is now used in over 20 systems in cities around the world, including many busy, large-scale systems in China and in Japan.

Bombardier isn’t the only manufacturer of LIM cars

See also: List of Linear Induction Motor rapid transit systems

Osaka's Nagahori-Tsurumi-Ryokuchi line was the first of numerous linear motor train lines.
I took this photo when I was visiting Osaka in March of this year. Look, a reaction rail!!!

The biggest thing we misunderstand is that we think Bombardier is the “owner” of LIM technology and is the only manufacturer and provider of LIM cars. This is false.

In the city of Guangzhou, China, the world’s largest linear motor train system has over 100km of track. Already, three train lines in the city are using the technology and are responsible for carrying hundreds of thousands of passengers each day.

These are some of the newest subway lines that have been built in the city. One of them, line 6, opened just 2 years ago and is now the busiest line in the whole city.

The 3 Guangzhou metro lines use cars that were jointly manufactured by ITOCHU and CSR-Sifang. Meanwhile, in some of Japan’s biggest cities, Kawasaki Heavy Industries has manufactured LIM transit cars for systems serving hundreds of thousands of passengers a day in Kobe, Osaka and Tokyo.

sub_i_20150330_h_1
Brand new linear motor trains on Tokyo’s Oedo Subway line were made by a different manufacturer than the one that made the first-generation cars.

Kawasaki isn’t the only Japanese manufacturer of LIM cars. The upcoming system in Sendai is being supplied by Kinki Sharyo, and the Fukuoka system was supplied by Hitachi.

The Oedo subway line in Tokyo, one of the busiest lines in the city, is using several different manufacturers’ offerings: the first generation cars were manufactured by Nippon Sharyo and Hitachi, while new-generation cars delivered just this year were made by Kawasaki Heavy Industries. Tokyo’s example is proving that more than one manufacturer can be the supplier of linear motor trains.

These companies aren’t unaware of each others’ presence and do work with (and compete with) each other. They have even collaborated on certain occasions (as an example, Bombardier supplied bogies for some of Guangzhou’s metro cars – while Mitsubishi supplied the actual linear motors).

These cities chose SkyTrain technology for various reasons, one of the most popular reasons being the reduction in tunnel sizes and – as a result – the reduction in capital costs for building the system. In Japan, SkyTrain technology systems are directly promoted as a way of saving money.

See also: Linear Metro promotion page by Japan Subway Association

New systems are being announced and built very often, speaking to the success of this technology. The systems are responsible for moving many more people than even SkyTrain does – and do so reliably, every single day.

The newest system is opening in just 7 days in Sendai, Japan. I am looking forward to the launch celebrations.

Above: A promotional video for Sendai’s upcoming Tozai Line, showing the use of SkyTrain technology. The Tozai Line opens on December 6.

This technology is still very much being developed

Last month we were greeted by the arrival of the first “Mark III” SkyTrain vehicles. Bombardier’s Innovia Metro 300 product is the newest generation of Bombardier’s offering of SkyTrain technology. It has won orders here in Vancouver, for an expansion in Kuala Lumpur, Malaysia and – of all places – for a new rapid transit line in Riyadh, Saudi Arabia.

The renaming of what was previously called “ART” (Advanced Rapid Transit) into a “Metro” class product shows that Bombardier is as committed to keeping up with the development of linear motor propulsion technology, as its competitors are in China and Japan.

But what about all the breakdowns?

I’ve been feeling that SkyTrain technology critics would be motivated to speak as such due to the intensity of the recent SkyTrain breakdowns. For this, it’s important to get some perspective – particularly on what’s been causing some of these incidents to occur.

skytrain-control-cc-by-nc-sa
Track displays at SkyTrain control in Burnaby

Many of the recent break-downs on SkyTrain have been made worse by a particular shortfall that was identified in the commissioned SkyTrain performance review.

In the 1990s, BC Transit decided not to add a simple component to the automatic train control system which would have allowed the system to recover more quickly when a train is stalled. Other driverless transit systems have installed this component and thus do not face this particular problem.

From the independent SkyTrain performance review:

The SELTRAC technology of the 1980s has been upgraded with new control and software elements. SkyTrain was upgraded to the 2nd generation of the SELTRAC technology in 1994. However, SkyTrain did not include the auto-restart module that was available. Therefore, in a temporary loss of communication from the VCCs or VOBCs, SkyTrain SELTRAC technology still requires each train to be manually introduced into the control computer system.

Averaging 5-10 minutes per train to enter the necessary data, this equates to approximately 5 hours to fully recover operations, as there are approximately 40-58 trains operating depending upon when a service delay related to a train control communication failure occurs.

TransLink has identified the addition of this system as an immediate priority, but it may not be happening for another 5 years as the installation is a complex undertaking.

If BC Transit installed it 21 years ago, it would have been in place before the Millennium Line was built and we would be saving a lot of time with recent issues.

See: Fast SkyTrain restart 5 years away – Surrey Leader

Other breakdowns simply amounted to – in the case of last week’s incident – misplacement; – in the case of one of the 2014 breakdowns – human error; or – in the case of both the recent birds nest fire and tree hitting train incident – sheer bad luck.

Perhaps some of these breakdowns have resulted from the particulars of how our system was designed. Regardless, any transit system is prone to a breakdown of some sort. There are many different reasons.

breaker
At the same time as the SkyTrain incidents last week, a light rail train struck a pedestrian in Seattle and caused a 3-hour closure of the line in that area. Courtesy KIRO 7

My last blog post (We can learn from Japan on transit delays/incidents) was about a similar transit mishap in Japan last week on the JR Kobe Line, due to a fallen power pole. This is a conventional electric train line with rotary motors.

And, it seems no one knew about this but on the same day (and at the same time) as the SkyTrain breakdown of this week, Seattle’s LINK Light Rail line faced a 3 hour closure and disruption, when a pedestrian was struck by a train on an at-grade section.

What about the Scarborough RT?

You definitely can’t excuse the fact that Toronto wants to shut down the Scarborough RT, one of the first SkyTrain lines built and in-service, and replace it with either an extension of the Eglinton Crosstown LRT on the same route – or an extension of the Bloor-Danforth Subway line.

However, I reckon that the conversion and replacement has more to do with the desire to provide a through service with these other lines and reduce transfers. From a transportation planning perspective, that’s a very natural thing to want to have. It’s part of why the City of Vancouver has preferred that the “Broadway Subway” be built as an extension of the existing Millennium Line and not in any other way.

However, it’s also importance to have some perspective. The Scarborough RT was the first SkyTrain-technology line ever built, and was converted from what was supposed to be a standard extension of the Toronto streetcar system. The system was built to run only shorter Mark I cars, with newer Mark II cars deemed incompatible without a refurbishment.

Scarborough RT
The Scarborough RT was built well before a “Mark II” train car was even considered as part of the design.

This refurbishment was in fact studied, and was valued at $360 million. Going with a refurbishment was considered one of the most cost-effective ways to improve transit to Scarborough. The existing line and stations would be rebuilt to accommodate newer Mark IIs and Mark IIIs, and so provide a better service.

It would have cost less than rebuilding the line as an LRT system to integrate with the Crosstown line, and far less than building a new subway. It would have also avoided 28 additional months of transit service disruption for riders in Scarborough.

542-transit-chart
See: Our neglect of Scarborough RT is shameful: James – The Star

For whatever reason, be it political or otherwise, this suggestion fell on deaf ears – and that has been the subject of plenty of criticism. Transit planners in Toronto have condemned the neglect of the Scarborough RT’s infrastructure, calling it “shameful” and “inefficient”. It is pointed out that a January 2013 report by the TTC, commenting on the technology matter for a Scarborough rapid transit project, explicitly stated that:

“Notwithstanding criticisms and misinformation over the years, the Scarborough RT has been the single most-reliable service operated by the TTC. The service has been very successful at attracting ridership and has been operating over-capacity for a decade.” (2013 TTC report – page 9)

In addition, the Scarborough RT is run with drivers who operate the doors – breaking the fully-driverless design standard to which it was built to. As Toronto has not seen the full benefits of running ALRT the way it was designed, it’s hard to consider today’s judgement of replacing/shutting down the RT fair or unbiased.

2 years ago, Michael Schabas, a UK-based railway consultant of the Neptis Foundation, published an excellent report hypothesizing that the acceptance of SkyTrain technology in Greater Toronto could have saved billions of dollars and prevented a lot of the choking debate that’s put transit expansion there at a standstill today.

See: Toronto rapid transit review recommends SkyTrain expansion over LRT

Reports and viewpoints like these provide great insight and in my view are worth serious consideration. We all lose when someone is dismissive to consider really great alternatives, and ignores facts when there are facts at hand.


Help me put an end to the misinformation

Share this article on Twitter, Facebook and with anyone you know who’s concerned on transit matters. I believe that regional transit planning has been damaged significantly by misinformation like this, and it’s time to put it to an end for good.

I urge everyone reading this to help me spread the word and help me pressure Global into allowing me to respond to their article.

 

Malaysia confirms SkyTrain technology for 36km Klang Valley line

Featured above: A Mark II train on the region’s existing Kelana Jaya Line

It’s official: SkyTrain technology has been confirmed in Malaysia for a brand new, 36km rapid transit line to be built on the outskirts of Kuala Lumpur. The new ‘Klang Valley LRT Line 3’ will begin construction at the beginning of next year, and is expected to open for revenue service in the year 2020. An alignment study has been completed, and the project owner has distributed the construction tenders just last week for the new line so that the detailed design process may proceed.

The Klang Valley line will intersect with the existing Kelana Jaya Line on Kuala Lumpur’s RapidKL network. The Kelana Jaya Line was built on the same propulsion and driver-less technology used on the SkyTrain system in Metro Vancouver, and uses the same Mark II vehicles manufactured by Bombardier. In addition to the Klang Valley Line, RapidKL is also currently in the process of completing a 17km extension of the Kelana Jaya Line, which will open in 2016. Here’s a short description of the new line from RapidKL:

Designed to ease traffic congestion in the Klang Valley and connected to the current LRT Kelana Jaya Line and the upcoming MRT Line 1 Sungai Buloh–Kajang, the proposed alignment of the LRT3 is currently being finalised by the Land Public Transport Commission. LRT3 aims to connect Bandar Utama to Klang, covering 36km, and will comprise 25 new stations.

Daryl’s take reported on the Klang Valley Line last year, then known as the “Shah Alam Line” (SEE: Previous article) when its potential use of SkyTrain technology was merely a possibility. This has now been confirmed in the alignment studies.

VIEW NOW: Klang Valley LRT 3 Environmental Assessment [PDF]

The environmental impact assessment for the Klang Valley/LRT3 project, which was uploaded by observers on the SkyscraperCity forum, mentions that the vehicles on the proposed transit line will be the “similar to those used on the Kelana Jaya line” – indicating that they will be the exact same vehicles or a close variant, using the same linear motor propulsion technology, and driver-less operation.

The Light Rail Vehicle train, similar to those used in the Kelana Jaya LRT Line, will be used. The train can be configured to a 2, 4 or 6 car-vehicle train. The dimension of each car is 20 m long x 2.65 m wide x 3.44 m high. Each car will have a minimum of 36 seats and 6 passenger doors (3 doors on each side). It will be full Automatic Train Operation driverless system.

While the assessment did not specifically mention the use of linear motor propulsion, it did specify a vehicle height of 3.44m, matching the vehicle height of the Mark II trains on the Kelana Jaya line and thereby requiring the use of linear motor “SkyTrain technology”, as the height would not permit standard rotary motor propulsion due to its requirement of a higher platform. As a comparison, the regional network’s Ampang Line trains, using standard rotary-motor propulsion, have a height of about 3.9m. The assessment also specified a 5% maximum grade, requiring linear motor trains for safe operation. For rapid transit rail lines, standard rotary propulsion trains are generally limited to 3% maximum grades in order to accommodate for push-pull operations in the event of train stoppages and other emergencies.

The initial operation will use 54 2-car trains, at a 2-minute headway throughout the day. There will be an end-to-end time of 51 minutes on a running speed of 80 km/h, for an average speed of 42 km/h. Here are some additional highlights of the new Klang Valley line:

Largest SkyTrain technology expansion in recent history

At a whooping 36km from end-to-end, with 25 stations, the line will be the largest expansion of SkyTrain technology in recent history. I believe this will assuage some critics in Metro Vancouver who have claimed that the expense of SkyTrain technology prevents us from building larger-scale expansions. This is 36km of track being built at once, within 4 years!

6-car trains!

Guangzhou Metro Line 5
Yep, 6-car trains! Pictured: Guangzhou Metro Line 5

The new line will be designed to accomodate 6-car trains on platforms that are 120 m long – 50% longer than those used on the Expo and Millennium Lines. This will not be the first example of a SkyTrain technology transit line with trains longer than 4 cars (the Toei subway Oedo Line in Tokyo runs 8-car trains), but it may be the first done with Mark III trains if Bombardier is awarded the rolling stock contract.

330,000 daily passengers after 30 years

The line is being designed to meet projections of carrying 330,000 daily passengers by the year 2050, which will make it one of the busiest SkyTrain technology lines in the world – and possibly the busiest using Bombardier’s Innovia trains if those are used on the new line. Opening-day ridership is estimated at 70,000 riders.

82km of SkyTrain technology

With the existing Kelana Jaya Line and its extension, the Klang Valley line’s 36km addition will result in over 80km of SkyTrain technology rapid transit in operation in the Greater Kuala Lumpur area.

This will be the second largest network in the world, short of the Guangzhou Metro which is already operating over 100km of linear motor rapid transit and continues to expand that. If the rolling stock is provided by Bombardier, then RapidKL will surpass Vancouver’s SkyTrain to become host to the world’s largest SkyTrain technology system with Bombardier trains.

CSR-Zhuzhou consortium bids, debunks “SkyTrain is proprietary” myth

Naza proposes to finance up to 90% of LRT3 – The Star

According to a recent news report, Chinese rolling stock manufacturer CSR-Zhuzhou, which has previously provided linear motor technology for the Guangzhou Metro and the Changsha Maglev, has bidded for the Klang Valley line in a consortium with local construction firm Naza Engineering & Construction. The Naza-CSR consortium have offered to fund up to 90% of the project cost, in an effort to lure the contract.

If the consortium wins the contract, the trains will then be built by CSR-Zhuzhou rather than Canada’s Bombardier. They will still have to fit the specifications in the alignment study, meaning that linear motor propulsion trains – likely based on the ones in service in Guangzhou – will be used.

A Naza-CSR win would mark the second time in history (the first being Tokyo) that a SkyTrain technology rapid transit system is operating vehicles from two different manufacturers, effectively debunking a commonly spread idea throughout this region that “SkyTrain technology”, which was originally developed in Canada, is proprietary. The Greater Kuala Lumpur region is familiar with CSR-Zhuzhou: they had previously provided rapid transit vehicles (of standard rotary propulsion tech) for the region’s older Ampang Line.

Bombardier eyeing Klang Valley Line, sets up resources in Malaysia for prospective bid

Bombardier targets sales in the Asia Pacific to reach 25% in the next 5 years – XSInvest

A representative from Canada’s Bombardier Transportation (the manufacturer of our Expo and Millennium Line SkyTrain cars) has previously stated that the company is eyeing a train order for the proposed Klang Valley Line project, as well as other proposed heavy rail rapid transit projects throughout the region. Bombardier Rail opened a new office in Kuala Lumpur last year to facilitate operations in Malaysia and throughout Asia, accomodating 100 engineering, project management, systems integration and signalling specialists. If Bombardier bids for the Klang Valley line, they will then be in open competition with CSR-Zhuzhou and any other bidders for the line rolling stock.

Debates over: the line is opening in 5 years

LRT3 Tender Documents Ready for Collection – RapidKL

While we can’t seem to decide on transit projects or technologies here in Metro Vancouver, the Klang Valley region has progressed quickly and the project owner has already started the call for construction tenders. This is not just a proposal at this point – the consultations have been finished, and the project is moving forward. The line will be open for service just 5 years from today.

About Kuala Lumpur’s “Rapid Rail” system

Kuala Lumpur's integrated rail system. The Kelana Jaya line is in magenta.
Kuala Lumpur’s integrated rail system. The Kelana Jaya line is in magenta.

Kuala Lumpur’s RapidKL network is like a clone of our SkyTrain system overseas: the system is composed of several grade-separated, automated (driverless) rapid transit lines. Some use the same linear induction motor propulsion technology and Bombardier Mark II vehicles used on SkyTrain here in Vancouver, whereas others use standard rotary motor technology (as with the Canada Line). The Ampang Line, the first rapid transit line, used standard rotary propulsion and was opened in 1996. This was followed by the 1998 opening of the Kelana Jaya Line, the fully automated linear-propulsion line that looks and works exactly like our SkyTrain system, with the same Mark II trains.

The 29km Kelana Jaya Line is built with both overhead sections and bored tunnel sections through the city core. It is the busiest and most popular rapid transit line in metropolitan Kuala Lumpur with 160,000 riders daily [1], and was for a long time the only rapid transit service in the Klang Valley metropolis that broke even (revenues paid for operations costs) until the Ampang Line, which had historically fallen a few thousand riders short from breaking even [1][2], was equipped with thec system to itself become fully automated (driverless) [3]. Both lines are currently receiving extensions that are due to open at around the same year the Evergreen Line is opened here in Vanouver.

The extensions are shown in the above map (note the unnamed stations near the bottom). Kuala Lumpur’s Rapid Rail system has been immensely successful since its opening, being major money generators for the regional rapid transit system and the biggest drivers of ridership and high-density development. SkyTrain technology helped the fares on RapidKL’s rapid transit lines remain completely unchanged for 10 years [4], despite hydro bill increases for the operating company, as a result of continually increasing ridership [5]. The RapidKL network is considered the “key revenue-generator contributor” for Prasarana, the regional transportation authority if the Klang Valley [6]

Sources/footnotes
  1. Passenger numbers from Urban Rail Development Study, page 19 [LINK]
  2. The Ampang Line breaks even at 170,000 riders daily, according to Malaysian Business (article “Red Flags” from 16 June, 2000 issue – not available online) – most recent recorded ridership was 141,000 daily
  3. The Kelana Jaya Line has been automated from start of service; the Ampang Line was refitted with the Thales SelTrac system in 2012 [SEE HERE]
  4. LRT, Monorail fares to go up next year – Astro Awani report [LINK]
  5. Prasarana Power Cost Up 17% since Jan 1 – The Edge Malaysia [LINK]
  6. Description page on Rapid Rail Sdn Bhd [LINK]

Testing out Transitmix – New Transit Mapping/Visualization Tool

TransitMix is a new web app that allows both professionals and armchair transit planners/enthusiasts to easily conceptualize transit networks and routes
TransitMix is a new web app that allows both professionals and armchair transit planners/enthusiasts to easily conceptualize transit networks and routes

I caught wind of Transitmix while scrolling through my new reads on Pulse Reader. Jarrett Walker’s blog (Human Transit) has this to say about the tool, which was created by a group of Code for America developers:

Transitmix is simple way to think about transit in terms of bus requirements and real costs. Basically, the user draws a route on a map and plugs in span and frequency. The app then calculates a vehicle requirement and cost in both hours and dollars, factoring in an adjustable layover ratio, average speed and dollar cost per service hour.

Transitmix theoretically works for any city on the map, as any city-related data such as operating cost per service hour is inputted by the user. This tool could theoretically also be used to layout and plan rapid transit lines (including rail) with the insertion of the appropriate “average speed” and “operating cost” values, albeit with the present limitation that lines snap to roads and cannot use other rights of way.

It’s made by the same people who created Streetmix, an urban road visualization tool that I previously featured on this blog.

See also: StreetMix lets you create the perfect urban road
See also: Human Transit – Transitmix: a new tool for armchair transit planners (and pros too?)

I tried it out here in Vancouver to conceptualize one new transit route I had in mind, based on a City of Vancouver (and more recently, Mayors’ Council-approved) proposal to introduce a B-Line type service from Commercial-Broadway station down Victoria Ave. (Pictured above – separate article coming soon)

On the Transitmix Experience

Bus assumptions - TransitMix

One of the reasons Transitmix is currenty able to work with so many cities around the world without issue is because it currently relies solely on user-inputted data.

That means, making effective use of the tool means knowing the average cost of service in your area (operating cost per revenue service hour) because this is not provided for you by the tool. I tracked this down for Metro Vancouver by checking TransLink’s bus performance reviews and other documents.

Unfortunately, that single value for operating cost is valid for all routes on the map and cannot be changed per route – meaning it is currently not possible to accurately compare the costs of standard bus services vs. less-costly community shuttle bus services (or mixes of both). It is, however, possible to create a completely separate map with the appropriate value inputted for those routes.

TransitMix is also currently not able to tell which roads are arterial roads, freeways, or local neighbourhood streets. That means that any speed calculations – which have an effect on operating cost and service levels – will have to be done manually, outside of the tool. At present, they will also have to be converted to mph.

These are the only limitations I’ve found. Among the strengths, previously made maps can be easily shared or remixed – and kept for future re-access – via the numbered URL.

Outlook

Transitmix will become an important tool to empower individuals who have an interest in transit. It takes out a lot of the effort in visualizing and presenting a proposal, and makes instant what would otherwise be a plethora of calculations.

The tool is available at www.transitmix.net.

Montreal may use SkyTrain technology for Champlain Bridge “LRT”

After Côté tribute, council debates Champlain Bridge transit

BY RENÉ BRUEMMER, GAZETTE CIVIC AFFAIRS REPORTER MAY 26, 2014

MONTREAL — The start of Monday’s monthly city council meeting was dedicated to a man who never served as an elected official but whose life left an enduring mark on a city he loved.

After his homage, a large part of the meeting was dedicated to the question of putting a light-rail transit system on the new Champlain Bridge, a topic close to the heart of Marcel Côté. [READ MORE – The Gazette]

In the City of Montreal, City Council is at odds as to what type of transit should complement the replacement of the dangerous Champlain Bridge, which has come under increased scrutiny after the federal government announced its funding.

SEE ALSO: Federal budget promises fix for Montreal’s aging Champlain Bridge, new Windsor-Detroit border crossing – National Post

Montreal’s transit authority is pleading the City Council to vote in favour of a Light Rail Transit (LRT) system on a replacement for the crumbling Champlain Bridge, whereas some stakeholders prefer a Bus Rapid Transit (BRT) system. The LRT line, initially meant to provide an alternative transit option for the corridor with no Champlain Bridge replacement, has been in the planning stages since before the need to replace the bridge was identified.

I was reading about this and came across a concept image for the proposed highway median LRT system, on the official website for the proposed line. The yellow-coloured train looks suspiciously like a Mark II SkyTrain vehicle in a 5-car configuration:

CONCEPT IMAGE - Champlain Bridge LRT, taken straight off of the AGENCE MÉTROPOLITAINE DE TRANSPORT website
CONCEPT IMAGE – Champlain Bridge LRT, taken straight off of the AGENCE MÉTROPOLITAINE DE TRANSPORT website

I did some further digging and found that this image is repeated in the preliminary design studies for the light rail transit system, which is comprehensively suggesting that the desired specifications of the new “LRT” line are fully compatible with linear induction motor propulsion (“SkyTrain technology”) and will be using similar rapid transit vehicles.

SEE ALSO: Highway 10/Downtown Montreal Corridor LRT study

This is made evident by a number of items on the project’s list of desired performance criteria on page 32:

• an attractive service operating at a high commercial speed (over 50 km/h) and a high maximum speed (100 km/h);
• a high frequency (intervals less than every 3 minutes at rush hour);
• a high level of safety thanks to guide rails, an exclusive track, automated operating systems and anti-collision devices;

and on page 55:

3.4.1 Operating mode
Automatic train operation has been retained because, among other things, it allows for reduced service intervals and running
times, increased flexibility for adjustments of timetables and intervals, as well as improved safety, better controlled accelerations,
and greater passenger capacity in each train set.

and on page 56:

3.4.7 Car performance requirements
…The design load of the cars (seated passengers + four standees/m2) is 131 passengers per car. Each train will be made of 5
cars and will therefore have a capacity of 655 passengers.

Notice how this is exactly the passenger capacity of a Mark 2 vehicle.

With 80-90m platforms, frequencies less than 3 minutes, 5-car trains, and high-floor cars on a fully grade-separated right-of-way with 6% slopes… almost everything matches. You name it, SkyTrain has it, and Montreal’s Champlain Bridge “LRT” is also going to have it.

Studies have identified that the proposed rapid transit line, which will be fully grade separated, has a positive benefit:cost ratio of 1.11:1. It is 15km long, and advertises a travel time of just 18 minutes from the outbound terminus to Montreal City Centre.

Montreal Champlain LRT recommended alignment
Montreal Champlain LRT recommended alignment – taken from study

Why this matters

You may recall that I recently started a new blogseries called The Problem with SkyTrain critics, which comes at a time when several SkyTrain or other rapid transit expansions are being debated here in Metro Vanouver. One of the problems I have identified with SkyTrain critics (and will be discussing shortly in more articles on the matter) are the numerous dubious claims of SkyTrain’s “obsolescence” – SkyTrain critics claim that the technology, which was developed in the 1980s, no longer has a place in rail rapid transit planning.

SkyTrain criticsdeny SkyTrain’s potential as a high-quality rapid transit system that generates billions of dollars in transportation, developmental and economic benefits. They clutter our blog-feeds, newsletter sections and comments with endlessly varied suggestions to perpetuate the belief that SkyTrain simply isn’t the best option for investment.

SEE ALSO: The Problem with SkyTrain Critics – Denying the Benefits Part I

But, this is the second example I have uncovered as of late that shows that the technology we use in SkyTrain is becoming a serious rail rapid transit option for cities worldwide. In another recent blog article, I brought to light that Kuala Lumpur [SEE HERE] has approved an additional 36km of SkyTrain expansion in addition to the ongoing 17km extension of the Kelana Jaya Line. Other extensions are taking place in Sendai, Japan and in Riyadh, Saudi Arabia. The Guangzhou Metro recently opened a new metro line using SkyTrain technology, which already carries over 700,000 passengers daily.

The success of SkyTrain (in particular, the Canada Line) has also inspired the Montreal airports authority to advocate for a light metro-type shuttle to the airport.

SEE ALSO: Montréal-Trudeau Airport Light Rail Shuttle Study
The JFK AirTrain was one of the rapid transit systems mentioned in the Champlain LRT study as a reference, alongside the Millennium Line and Canada Line in Vancouver.
The JFK AirTrain (which uses SkyTrain technology) was one of the rapid transit systems mentioned in the Champlain LRT study as a reference, alongside the Millennium Line and Canada Line in Vancouver.

Kuala Lumpur: New 36km SkyTrain line to complement extension

UPDATE – 11th April 2015: SkyTrain technology has been CONFIRMED for the proposed Klang Valley Line.

Today I bring you news from Malaysia! A news release from a few days ago reveals details of a new 36km SkyTrain line to complement an already under-construction 17km extension of the Kelana Jaya line are beginning to surface. The new extension would run from a proposed new transit hub, intersect the Kelana Jaya Line, and then travel through Shah Alam to a terminus at Klang – a city of close to 850,000 people situated 32km west of Kuala Lumpur.

The original regional transportation plan finalized in 2011 [CLICK HERE] proposed that this line would be constructed after 2030; however, a re-examination of the business case in June 2013 has resulted in the project being pushed up to the pre-2020 timeframe. An even newer study focusing specifically on the line details itself has suggested that there are immediate benefits to reap – and with that, the line is now a top priority investment. Construction is likely to begin on the new SkyTrain extension at the beginning of next year, where it will parallel the ongoing extension of the Kelana Jaya Line.

See Also: Greater KL/Klang Valley Urban Rail Development Plan – June 2013 [PDF]

The new plan helps show that the technology we use in SkyTrain is becoming a serious rail rapid transit option for cities worldwide, with expansions of SkyTrain-type lines now well under way in multiple cities – including here in Vancouver, there in Kuala Lumpur, in Sendai, Japan and in Riyadh, Saudi Arabia.

Additional details

The “Shah Alam LRT” will be the second SkyTrain-type line in Kuala Lumpur (or the third if the Kelana Jaya Line extension is considered a separate line). The new line will connect directly to the Kelana Jaya Line and may offer a continuous service onto the line. With its completion, Kuala Lumpur’s RapidRail system will eclipse the SkyTrain system in the amount of in-service linear motor trackage, spanning a distance of 82km before 2020 – whereas SkyTrain (lines using linear induction motor tech) will span just 63km after the completion of the Evergreen Line. This will make Kuala Lumpur’s system the second longest linear motor rapid transit system in the world, after the 100km Guangzhou Metro system.

See also: List of Linear Induction Motor rapid transit systems

The new “Shah Alam LRT” line will complement an already in-service commuter rail transit line, similar to how the Evergreen Line will complement the non-stop West Coast Express service in the tri-cities. The rapid transit stock for the new line can be expected to be built by either Bombardier or CSR-Zhuzhou. Bombardier has been a major supplier for the rapid transit cars on the Kelana Jaya Line (ART 200/Mark II trains), while CSR-Zhuzhou has supplied standard rotary-motor rapid transit cars for the Ampang Line (but is also a major supplier of linear motor cars for the Guangzhou Metro system).

About Kuala Lumpur’s “Rapid Rail” system

Kuala Lumpur's integrated rail system. The Kelana Jaya line is in magenta.
Kuala Lumpur’s integrated rail system. The Kelana Jaya line is in magenta.

In case you weren’t initially aware, Kuala Lumpur’s “Rapid Rail” network is like a clone of our SkyTrain system overseas: the system is composed of several grade-separated, automated (driverless) rapid transit lines, many of which use the same linear induction motor propulsion technology and Bombardier Mark II vehicles used on SkyTrain here in Vancouver. The Ampang Line, the first rapid transit line using standard rotary motor technology, was opened in 1996 as the first rapid transit rail line in Kuala Lumpur. This was followed by the 1998 opening of the Kelana Jaya Line, the fully automated linear-motor type line that looks and works exactly like our SkyTrain system. The 29km Kelana Jaya Line is built with both overhead sections and bored tunnel sections through the city core. It is the busiest and most popular rapid transit line in metropolitan Kuala Lumpur with 160,000 riders daily [1], and was for a long time the only rapid transit service in the Klang Valley metropolis that broke even (revenues paid for operations costs) until the Ampang Line, which had historically fallen a few thousand riders short from breaking even [1][2], was equipped with the Thales SelTrac system to itself become fully automated (driverless) [3]. Both lines are currently receiving extensions that are due to open at around the same year the Evergreen Line is opened here in Vanouver. The extensions are shown in the above map (note the unnamed stations near the bottom). Kuala Lumpur’s Rapid Rail system has been immensely successful since its opening, being major money generators for the regional rapid transit system and the biggest drivers of ridership and high-density development. SkyTrain technology has helped the fares on RapidKL’s rapid transit lines remain completely unchanged for 10 years [4], and continue to remain the same (so far) through power tariff increases for the operating company, mainly because of increasing ridership [5]. The rapid transit lines are considered the “key revenue-generator contributor” for Prasarana, the regional transportation authority if the Klang Valley [6]

Sources/footnotes
  1. Passenger numbers from Urban Rail Development Study, page 19 [LINK]
  2. The Ampang Line breaks even at 170,000 riders daily, according to Malaysian Business (article “Red Flags” from 16 June, 2000 issue – not available online) – most recent recorded ridership was 141,000 daily
  3. The Kelana Jaya Line has been automated from start of service; the Ampang Line was refitted with the Thales SelTrac system in 2012 [SEE HERE]
  4. LRT, Monorail fares to go up next year – Astro Awani report [LINK]
  5. Prasarana Power Cost Up 17% since Jan 1 – The Edge Malaysia [LINK]
  6. Description page on Rapid Rail Sdn Bhd [LINK]
Featured image: Kelana Jaya Line train approaches station. CC-BY Flickr - @withcuriosity
Featured image: Kelana Jaya Line train approaches station. CC-BY Flickr – @withcuriosity

Guangzhou opens world’s newest SkyTrain technology line

I recently updated my List of Linear Induction Motor rapid transit systems [LINK] list to reflect the opening of Guangzhou Metro’s Line 6 – the world’s newest “SkyTrain technology” line, adding 25km of linear motor trackage to Guangzhou’s Metro system. The opening was met with a celebration last week.

SEE LINK: Guangzhou Metro Line 6 opened on December 28

SEE NEWS VIDEO (in Chinese):

The new line is expected to carry 700,000 passengers daily (about twice as much as our SkyTrain system carries) in the first month – making it one of the world’s busiest applications of SkyTrain technology on a rapid transit line. Guangzhou now has 100km of active linear motor rapid transit track – twice the length that Vancouver has on our SkyTrain system. Line 6 has both above-ground sections and tunnel sections; the latter in particular takes advantage of the low-height of linear motor cars, which enables smaller tunnels and cost savings.

Line 6 is very unique among the Guangzhou Metro Lines in that it has the most stations, the most passenger amenities, and offers the most frequent service of any Guangzhou Metro line. Basically, Guangzhou has chosen to build the most important subway line in the city with SkyTrain technology.

Guangzhou Metro ordered almost 200 linear motor rapid transit cars from Itochu and China’s CSR Sifang for Line 6. [SEE LINK]

A recent Vancouver Sun piece [LINK HERE] that I’m planning to send commentary on took note on the apparent obsolescence of “25-year-old SkyTrain technology”. The opening of this new line in Guangzhou, which is a high-capacity application, shows that this is far from true. In fact, there’s new research going on in India [LINK] at the Indian Institute of Technology (Banaras Hindu University) Varanasi to make it the fourth country to offer a “SkyTrain technology” product – after Canada, Japan and China.

Toronto rapid transit review recommends SkyTrain expansion over LRT

Scarborough RT
A Scarborough RT train in Toronto boards passengers. The Scarborough RT uses the same propulsion technology as Vancouver’s SkyTrain system, using a fleet of Mark I cars.

Looks like my calls are being echoed in the City of Toronto. Someone out there is seriously listening to me, for I had previously proposed the very idea this think tank is proposing through Better Surrey Rapid Transit (SkyTrain for Surrey), in an attempt to communicate to people that SkyTrain expansion can make sense.

I have been pushing for quite some years now for a SkyTrain expansion in my home city (Surrey) over the current Light Rail expansion plan on account of SkyTrain making a lot more sense (most of you reading probably know this of me). As part of that, I went ahead and applied some of my thinking onto Toronto’s transit proposals in a special article I wrote regarding the under-construction Eglinton Crosstown Line. I published that write-up more than 1.5 years ago, in March 2012.

The use of [SkyTrain technology] would provide the same cost savings that moving a portion of the LRT at-grade would and more, despite a need for complete grade separation.  It would provide faster, more reliable service and be more flexible in capacity expansion, and also remove the travel time penalty associated with at-grade LRT.
[READ MORE – “The Compromise is SkyTrain – Toronto should be pursuing this technology and not LRT on Eglinton” on SkyTrain for Surrey]

I supposed that using linear motor-propulsion “ALRT” (also known by some critics here as “SkyTrain technology”) would cut down on the Eglinton Crosstown Line’s tunnel size and tunneling costs (the LRT is being built with a 6.5m diameter tunnel, whereas SkyTrain technology requires just a 5.3m diameter tunnel), saving billions and billions of dollars, and opening up the room for grade-separating the rest of the line and providing better service throughout, increasing ridership numbers and improving the business case. The Crosstown Line is currently being built for at-grade LRT technology, assuming that further expansions would be at-grade.

A map of the Eglinton Crosstown LRT in contrast to Toronto's current rapid transit system
A map of the Eglinton Crosstown LRT in contrast to Toronto’s current rapid transit system

The Neptis Foundation yesterday submitted a very bold critique of the Metrolinx “Big Move” plan that seems to agree with a lot of my previous propositions. The 144-page study recommends a different Toronto rapid transit plan than the one being recommended by Metrolinx. It thinks in the same way I have thought, in that leveraging the Scarborough RT’s ALRT/SkyTrain technology and extending it would make more financial and practical sense than the current proposal to build LRT.

Business case of LRT proposals vs. study's SkyTrain proposal [CLICK TO ENLARGE]
Neither Metrolinx nor TTC seems to have given serious consideration to development of Scarborough and Eglinton Crosstown lines using ALRT or similar “light metro” technology. This technology has been applied very successfully in more than 20 cities around the world. 89 Some architects and urban designers prefer surface LRT, because it is less visually intrusive, and can run in mixed traffic and pedestrian environments, albeit at much lower speeds. But faster services on exclusive rights-of-way are far more effective, and efficient, at getting motorists to switch to transit.
The Toronto LRT schemes could be greatly improved by building them with fully exclusive rights of way, perhaps automated ALRT or similar technology. Ridership would be much higher, as would the benefits to the region. And the costs could actually be less.
[READ THE FULL REPORT – CLICK HERE]

The author, a UK-based railway consultant, is calling for the full package: a switch of the Eglinton LRT line to a SkyTrain-technology ALRT line with driverless train automation, grade-separation of the full line (including Phase II) to offer faster journeys, and shorter station platforms (appropriate given higher train frequency). He cites that such a setup would generate more than twice the benefits and cost half as much per new daily transit rider. This is based largely on the basis that as a faster SkyTrain-type line it could provide better service and attract more ridership, which is very sound. It isn’t rocket science: when compared against light rail transit systems throughout North America, our 68km SkyTrain system here in Metro Vancouver is outperforming all of them in ridership numbers. There is value in better rapid transit service.

Here is one excellent question I would like to highlight: the study questions a proposal to refurbish the existing Scarborough RT line (a 1980s-era SkyTrain technology line traversing eastern Toronto), noting that the costs to refurbish the RT line to use LRT technology are higher per kilometre than the from-scratch SkyTrain construction costs for the Evergreen Line in Vancouver:

At $1.8 billion for 10 km, the Scarborough LRT line would be considerably more expensive than the Sheppard Line, 68 or about $180 million per km. About half the cost is for conversion of the existing 6.5-km RT to accommodate low-floor LRT cars, with overhead power collection. This involves substantial reconstruction of six intermediate stations, and complete reconstruction of Kennedy Station to provide a larger underground loop, and track connection with the Eglinton LRT so TTC can exchange cars for maintenance purposes (but not for through-running with passengers). The balance is for construction of 4 km of new line, mostly elevated, from McCowan to Sheppard Avenue.
Note that at $180 million per km, the cost per km for the Scarborough RT is about 30% higher than the cost of the Evergreen Line, a fully grade-separated ALRT line in Vancouver, even though the Scarborough line uses mostly existing infrastructure, and otherwise operates through a broadly similar corridor.
Concept: Douglas-Lafarge Lake SkyTrain Station on the Evergreen Line SkyTrain
Concept: Douglas-Lafarge Lake Station on the Evergreen Line SkyTrain

The study recommends building on SkyTrain technology on account of finding that the LRT proposals in Transit City and following plans had low (or negative) benefit:cost ratios, in exactly the same manner as I am recommending SkyTrain technology in Surrey based on a negative benefit:cost ratio for LRT – and does a great job at making a case for it, addressing issues raised with capacity and size of rolling stock, among other things.

The author officially proposes the “Scarborough Wye” concept, for 3 rapid transit lines using SkyTrain technology: the existing Scarborough RT with renewed infrastructure, its extension to Malvern Centre, and a new line from Scarborough Centre to North York via an elevated right-of-way in the centre of the 401 Freeway and down the existing Sheppard Subway tunnels. He makes the case that the whole concept could be built for an outstandingly low cost per new transit rider and a high benefit-cost ratio – better than any of the LRT proposals that have gone through thus far.

Scarborough Wye proposal from Toronto transit plan critique; CLICK TO ENLARGE
Scarborough Wye proposal from Toronto transit plan critique; CLICK TO ENLARGE

We can only wonder if the common sense overflowing from this study could possibly prevail in the upcoming decisions at TTC and Metrolinx, and I hope something moves forward because it does look like SkyTrain technology is the solution for providing a lot of high quality transit. I think it would send a good message across Canada and to Metro Vancouver’s decision-makers and planning authorities as well.

More on Michael Schabas, the study author

Michael Schabas is a UK-based railway consultant who has been involved in launching several new railway projects and businesses.

With a background in urban rail projects in the Canada and the United States, he came to London in 1988 as Vice President for Transport for Olympia & York (O&Y), who were developing the Canary Wharf project in London Docklands. He led O&Y’s involvement in planning and promotion of the Jubilee Line Extension, and also instigated the re-signalling and re-engineering of the Docklands Light Railway.

Between 1981-1986, he worked for the UTDC (Urban Transportation Development Corporation) and was involved in the early development of the automated rapid transit technology used in Vancouver’s SkyTrain system.

Source: Wikipedia; Also see: his website

The iPhone 5C is not a “budget” iPhone.

Worldwide Marketing Senior Vice President Phil Schiller stands in front of iPhone 5Cs at the recent Apple unveiling event; Photo: CC BY-SA Globovisión
Worldwide Marketing Senior Vice President Phil Schiller stands in front of iPhone 5Cs at the recent Apple unveiling event; Photo: CC BY-SA Globovisión

The new iPhone 5C is not a budget iPhone.

It’s a smart move by Apple of keeping their profit margins higher, as it costs less for them to produce a 5C and offer it at the last-gen price, than to lower the original iPhone 5’s price to a last-gen price.

With an unlocked minimum cost of $550 in the United Staes, at least one India news source is complaining [LINK HERE] that this is not an affordable smartphone for emerging markets. It is far from that. EDIT: Tech blog Engadget [LINK HERE] has also brought light to this.

By comparison, the new and high-end Moto X smartphone by Motorola – which is, unlike the Chinese-manufactured iPhone 5C (which is already the subject of at least one labour scandal [LINK HERE]) is completely built in the U.S.A. with the most ethical practices, costs $575 unlocked – just $25 more. Motorola is preparing an even lower-cost Moto X that will completely undercut the iPhone 5C despite more ethical manufacturing.

Here’s a graphic from Engadget:

iPhone 5C vs. Motorola Moto X - from Engadget
iPhone 5C vs. Motorola Moto X – from Engadget

And, thus, by concept the iPhone 5C we have come to expect is a massive failure.

It’s just another attempt by the world’s greediest and most irresponsible corporation to fool people (by way of marketing) into giving them lots of money, through exceptionally high profit margins, that they will stow away and rarely if ever use.

List of Linear Induction Motor train lines

A concise list of all current and future rapid transit lines using linear induction motor propulsion technology. There are over 20 in-service or proposed systems across 16 cities/metro areas.

Less significant installations (i.e. non-urban rail) are not included. The list is sorted by system length.

Guangzhou Metro (China)

Guangzhou Metro Line 5

LIM system length: 117.5km (future: +65km)
Linear propulsion rolling stock:
– CSR-Sifang/ITOCHU EMU, Bombardier BM-300 bogies (Line 4, 120 cars in 4-car service)
– CSR-Sifang/ITOCHU EMU, Bombardier BM-300 bogies (Line 5, 180 cars in 6-car service)
– CSR-Sifang/ITOCHU EMU, SDB-LIM bogies by CSR-Sifang (Line 5, 192 cars in 6-car service)
– CSR-Sifang /ITOCHU EMU, Bombardier FLEXX Metro 2000 bogies (Line 6, 196 cars in 4-car service)
Systems with LIM propulsion:
– Line 4 (2005) 43.7km / daily ridership: 300,070
– Line 5 (2009) 31.9km / daily ridership: 985,500
Line 6 (2013) 24.3km / daily ridership: 612,300
Line 6 east ext. (OPENED 12/28/2016) 17.6km
– Line 4 south ext. (opening 2017) 12.6km
– Line 5 east ext. (opening 2020) 9.8km (**confirmed Feb 2017, will integrate with Dongguan Line 1)
– Line 23 (opening 2025) 27.1 km (**confirmed in Feb 2017 that this line will integrate with Line 6)
Train control: Automated (SIEMENS system) with backup driver

Okinawa Island Railway (Japan, NEW SYSTEM)

Okinawa Railway System - Urban elevated railway station concept

LIM system length: 69km (future)
Announced: November 2014
Linear propulsion rolling stock:
– FUTURE: 4-car consists
Train control: Unannounced automated system

Vancouver SkyTrain (Canada)

2-car SkyTrain approaches Brentwood Station on the Millennium Line

LIM system length: 60km
Linear propulsion rolling stock:
– ICTS Mark I (150 cars, 75 “married pairs”)
– Bombardier ART 200 (108 cars, 54 “married pairs”)
– Bombardier INNOVIA Metro 300 (28 cars, 7 4-car consists)
Systems with LIM propulsion:
Expo Line (1986) 28.9km
– Millennium Line (2002) 20.1km
Evergreen Extension (OPENED 12/2/2016) 11km
Train control: Fully automated (Thales SELTRAC)

Dongguan Rail Transit (China, NEW SYSTEM)

LIM system length: 58km (future)
Announced:
November 2016
Systems with LIM propulsion:
Line 1 (opening 2020) 58km (** will integrate with Guangzhou Metro Line 5)

RapidKL Rail (Kuala Lumpur, Malaysia)

Kelana Jaya Line

LIM system length: 46km (future +36km)
Linear propulsion rolling stock:
– Bombardier ART 200 (70 cars, 35 “married pairs”)
– Bombardier ART 200 order 2 (140 cars, 35 4-car consists)
– Bombardier INNOVIA Metro 300 (56 cars, 14 4-car consists)
Systems with LIM propulsion:
Kelana Jaya Line (1998) 29km
– Kelana Jaya Line Putra Heights Extension (OPENED 6/30/2016) 17km
“LRT3” Klang Valley Line (UNDER CONSTRUCTION; 2020) 36km
Train control: Fully automated (Thales SELTRAC)

Tokyo Metro and Toei Subway (Japan)

Toei Oedo Subway

LIM system length: 40.7km (future +59.7km)
Linear propulsion rolling stock:
– Nippon Sharyo/Hitachi 12-000 series EMU (408 cars, 51 8-car consists)
– Kawasaki Heavy Industries 12-600 series EMU (16 cars, 2 8-car consists)
– Nippon Sharyo 12-600 series (2015-2016 batch) EMU (48 cars, 6 8-car consists)
– Kawasaki Heavy Industries unnamed NEXT-GEN EMU (88 cars, to replace 12-000 series)
Systems with LIM propulsion:
Toei Subway Ōedo Line (1991) 40.7km; daily ridership: 795,461
Metro 7/Eight Liner (FUTURE) 59.7km
Train control: Automated with backup driver

Beijing Subway and Airport Express (China)

Beijing Airport Express

LIM system length: 28.1km
Linear propulsion rolling stock:
– Bombardier/Changchun Railway Vehicles ART 200 (40 cars, 10 “Married pairs”)
Systems with LIM propulsion:
– Airport Express (2008) 28.1km
Train control: Automated with backup driver (Alstom CBTC)

Osaka Municipal Subway (Japan)

Osaka Subway LIM rolling stock

LIM system length: 26.9km
Linear propulsion rolling stock:
– Kawasaki/Kinki Sharyo 70 series EMU
– Kawasaki/Kinki Sharyo 80 series EMU
Systems with LIM propulsion:
– Nagahori Tsurumi-ryokuchi Line (1990) 15km
– Imazatosuji Line (2006) 11.9km
Train control: Automated with backup driver

EverLine Rapid Transit System (Yongin, Korea)

Yongin EverLine

System length: 18.1km
Linear propulsion rolling stock:
– Bombardier ART 200 (30 cars)
Train control: Fully automated (Bombardier CityFLO 650)

Sendai Subway (Japan)

Crews oversee a train on powered tracks with linear motor reaction rails installed.

LIM system length: 14 km
Linear propulsion rolling stock:
– Kinki Sharyo 2000 series EMU (60 cars, 15 consists)
Systems with LIM propulsion:
Tozai Line (OPENED Dec 6, 2015) 13.9km

Yokohama Municipal Subway (Japan)

Yokohama Subway LIM train

LIM system length: 13km
Linear propulsion rolling stock:
– Kawasaki 10000 series EMU
Lines with LIM Propulsion:
– Green Line (2008) 13km
Train control: Automated with backup driver

AirTrain JFK (New York, USA)

AirTrain JFK

System length: 13km
Linear propulsion rolling stock:
– Bombardier ART 200 (32 cars)
Systems with LIM Propulsion:
– Current AirTrain system (2002) 13km
Lower Manhattan – Jamaica/JFK Transportation Project via Long Island Rail Road track-sharing (FUTURE)
Train control: Fully automated (Thales SELTRAC)

Fukuoka City Subway (Japan)

Fukuoka Subway

LIM system length: 12km (+1.6km)
Linear propulsion rolling stock:

– Hitachi 3000 series EMU (68 cars, 17 consists)
Systems with LIM Propulsion:
– Nanakuma Line (2005) 12km (1.6km extension to Hakata opening 2020)
Train control: Automated with attendant

Kobe Municipal Subway (Japan)

Kobe Subway

LIM system length: 7.9km
Linear propulsion rolling stock:
– 5000 series EMU
Systems with LIM propulsion:
– Kaigan Line (2001) 7.9km
Train control: Automated with backup driver

Toronto Subway and RT (Canada)

Scarborough RT

LIM system length: 6.4km
Linear propulsion rolling stock:
– ICTS Mark I (62 cars, 31 “married pairs”)
Systems with LIM Propulsion:
– Scarborough RT (1985) 6.4km
Train control: Driver-controlled with partial automation

Detroit People Mover (USA)

detroit20people20mover

System length: 4.7km
Linear propulsion rolling stock:
– ICTS Mark I (12 cars, 6 “married pairs”)
Train control: Fully automated (Thales SELTRAC)