New SkyTrain changes hide drop in service (UPDATE: TransLink to reverse service drop)

New SkyTrain changes hide drop in service (UPDATE: TransLink to reverse service drop)
UPDATE Mon Oct. 3: It appears that TransLink has reversed the drop in service frequencies on the Expo Line as part of the upcoming changes. While retaining the lengthening of Mark I trains to 6 cars, Expo Line passengers will continue to have 6-minute service on each branch during off-peak periods, and peak period service will be increased versus the original proposal. The issues brought up in this blog post were cited by TransLink as having contributed to the decision to reverse the frequency changes.

The following reports have further confirmed the changes:


Original text below:

Yes, you read that headline correctly – this is not a joke, and not some mis-interpretation of the upcoming SkyTrain changes on October 22nd. TransLink is going to reduce Expo Line service frequencies, at all times of day, on October 22nd.

skytrain-oct-22
The SkyTrain as it will operate after October 22nd. The Expo Line is shown in blue.

The Expo Line, the original SkyTrain corridor extending to King George Station in Surrey, is the busiest line on our SkyTrain rapid transit system. After poking around on TransLink’s website along with forumers on discussion boards, I made a startling discovery about the upcoming October 22 SkyTrain changes. It appears that, for no apparent reason, TransLink is sneaking a reduction in service frequencies at all times of day on the Expo Line, and this is not being communicated with the public.

I initially confirmed this when I and some fellow online forumers on SkyscraperPage, CPTDB and others were looking into SkyTrain’s schedule changes. The operating schedules for SkyTrain, SeaBus and West Coast Express can be accessed through TransLink’s “bus schedules” page by typing in corresponding numbers in the 900s. The current Expo and Millennium Lines were using numbers 999 and 996, but we discovered that the numbers 992 and 991 were being utilized for a brand new schedule effective starting in October.

This schedule showed that SkyTrain frequencies were clearly being subject to a decrease at basically all times of day – not just the peak service hours. Mid-day and evening service (currently at every 6 minutes) and weekday day-time service (currently at every 7 minutes) would be operated less frequently at every 7.5 minutes. Some parts of the schedule have seen a minor service increase from 10 to 8 minutes, but this is happening at parts of the day where the issue of frequency is not as critical – such as late at night on weekdays and weekends.

skytrain-decrease
Wait times at Surrey SkyTrain stations will be 7-8 minutes after October 22nd, compared to the current 6 minutes, during mid-day periods.

TransLink representatives at a recent media event had commented that passengers would be waiting an “extra 10 seconds at peak times” (see: report by Jeff Nagel on Surrey Leader), although trains would be consolidated into longer consists (i.e. 6-car Mark I, 4-car Mark II or Mark III) make up for this and ensure a high capacity.

However, the actual schedule change I have uncovered shows that the actual increase in wait time is closer to 25 seconds on the Expo main-line inbound from Columbia Station (108 -> 133 seconds), and will be as high as 38 seconds on average on the King George branch in Surrey (162 -> 200 seconds). In addition, in a move that has by far been completely unannounced, passengers will be waiting up to an additional 1.5 minutes on each branch during mid-days and other off-peak periods.

TransLink has never confirmed this explicitly during Q&A sessions for the October 22 changes, but has recently quietly confirmed the change on its SkyTrain schedules page, which are now showing a “Current” and “Oct. 22” schedule that reflects the proposed change on the “bus schedules” page. For more info, see the page:

TransLink > SkyTrain Schedules > Expo Line

Frequencies will change as follows, according to TransLink’s website:

Expo Line – Waterfront to King George
Time of Day Frequency before Oct 22nd Frequency after Oct 22nd
Peak Hours (6-9AM, 3-6PM) 2-4 min. 2-5 min.
Mid-day (9AM-3PM) 6 min. 7-8 min.
Evening (6PM onwards) 6 min. 7-8 min.
Late night 8-10 min. 8 min.
Early Sat/Sun 8-10 min. 8 min.
Sat, Sun/Holidays 7-10 min. 7-8 min.

The changes in service frequencies will mean longer waits for trains at almost all times of day, making the Expo Line less reliable and less versatile to its many riders. It will also result in more overcrowded SkyTrain platforms – as longer waits between trains means each platform will need to service up to 25% more waiting passengers than there are today with higher frequencies. Some of our stations – particularly ones in the middle of reconstruction, such as Metrotown Station – could have trouble having to accommodate for additional waiting passengers.

Today's higher frequencies prevent platform overcrowding because the train arrives sooner to allow passengers to be on their way. The service changes will mean more overcrowded SkyTrain platforms.
Today’s higher frequencies help prevent platform overcrowding because the train arrives sooner to allow passengers to be on their way. The service changes will mean more overcrowded SkyTrain platforms on the Expo Line, as platforms will have to handle as much as 25% more waiting passengers.

While train lengths are increasing, I do see the possibility that overall service capacities will come down as a result of the changes. Going from 6 to 7.5 minute service in the mid-day and on weekends is a substantial 20% reduction in service frequency, and while Mark I trains would be operated in longer 6-car formation, the Mark II trains currently operating in 4-car formation would be essentially the same as they are today.

SkyTrain passengers already swallowed a change in 2013 that saw weekend frequencies on the Expo Line drop from 6 to 7 minutes on each branch, as part of a package of cost reductions implemented throughout the entire system to improve cost-efficiency. This has resulted in substantially increased weekend overcrowding, with Saturday PM volumes between Commercial-Broadway and Main Street-Science World stations now nearly at the line’s practical capacity in both directions (see: 2015 Transit Service Performance Review, Appendix E).

Why this makes absolutely no sense, whatsoever.

mark-ii-broadway
Prior to an expansion order in 2009, Mark II trains in 2-car formation were operated alongside Mark I trains on the Expo Line. SkyTrain had the flexibility to offer higher frequencies with the smaller trains, as opposed to lower frequencies with all of the Mark II trains in a 4-car formation.

One of the big advantages to the driver-less, automatic train control technology we use on our SkyTrain system has always been our ability to maintain high frequencies at any time of day, without high operating costs. On our system, shorter trains at higher frequencies can provide the same capacities as longer trains and lower frequencies typically found on other light and heavy rail systems, but without the higher costs associated with needing extra drivers and conductors.

This has made us a continental leader in providing rail rapid transit services among North American cities. I have previously noted that Metro Vancouver is unmatched in its off-peak rail transit service frequencies, when compared to metro areas of similar sizes – in which off-peak service on the rail network is generally provided every 10 to 15 minutes on individual lines.

SEE EXAMPLE
Portland, Denver, Pittsburgh and Cleveland are other metro areas similar in size to Metro Vancouver with rail transit systems, yet none of them are able to provide the kinds of service frequencies we have on our fully-automated SkyTrain system. Go [HERE] to see a comparison of our service frequencies against these cities’.

What can be done about this

TransLink is dealing with a public credibility problem and this is certainly not going to help their case. The entire service change on October 22nd is being made without a formal public consultation process, which wouldn’t really be so much of a problem if there weren’t going to be major changes in service frequencies on existing lines – but there are. And, there has been no indicated rationale as to why mid-day and weekend service frequencies are also being reduced.

I don’t see any barriers to continuing to provide a 6-minute service off-peak with the longer trains, or utilizing the existing schedule whereby peak service is operated at higher frequencies, with a mix of trains including shorter 4-car Mark I trains.

UPDATE Fri Sept. 23 @ 10:24AM: At the moment, the fabrics of how this decision went through are still unknown to me. However, I am now working on communicating with BCRTC and TransLink’s planning department to get some answers and gauge whether I could push to have this decision reversed.
UPDATE Mon Oct. 3: It appears that TransLink has reversed the drop in service frequencies on the Expo Line as part of the upcoming changes. While retaining the lengthening of Mark I trains to 6 cars, Expo Line passengers will continue to have 6-minute service on each branch during off-peak periods, and peak period service will be increased versus the original proposal. The issues brought up in this blog post were cited by TransLink as having contributed to the decision to reverse the frequency changes.

The following reports have further confirmed the changes:

Montreal’s 67km driverless train system to be third longest in world

Montreal’s 67km driverless train system to be third longest in world

Proposed driverless train network cites Vancouver as model in case study


The Caisse de dépôt et placement du Québec (CDPQ), an institutional investor responsible for financing major transportation projects in Quebec, has proposed the construction of a driverless rapid transit network, similar to our SkyTrain system, to service Greater Montreal.

The Réseau électrique métropolitain (REM; English: Metropolitan Electric Network) will span 4 proposed corridors and 67km. The system will serve several Greater Montreal cities and be the 3rd longest driver-less system in the world after the Dubai Metro and Vancouver’s SkyTrain.

The proposal will double the length of Montreal’s rail rapid transit network, and addresses the need for rapid transit to service areas in Greater Montreal where most commuters are driving to access the inner city, or are putting up with long bus and commuter train rides. The service will address the previously identified need to bring rail rapid transit across the Champlain Bridge, and bring new rapid transit to many areas of western Montreal that do not have any access to rapid transit currently.

Travel time savings and high service frequency were made key focuses in the CDPQ’s proposal, which outlined what kind of travel time savings would be achievable on each of the 4 proposed corridors:

Part of the project would involve the conversion of the existing Deux-Montagnes commuter rail line to integrate with the proposed rapid transit network. Similar to SkyTrain’s Expo Line, an existing rail tunnel will be repurposed in order to service the new rapid transit line (this tunnel currently carries the Deux-Montagnes line’s existing service). In addition to servicing 3 major suburban areas, the proposal includes a branch to the airport that fulfills an earlier proposal to build a Canada Line-like system connecting to the rest of Greater Montreal.

At a cost of $5.5 billion to build, the new line will represent a major investment in Greater Montreal rapid transit that will be the biggest since the Montreal Metro. However, Caisse, which was awarded the responsibility for financing major transportation projects in Quebec in an infrastructure deal last year, has offered to invest $3 billion – just over 50% of the project’s cost – into the REM project. Additional public investment would then be split between senior-level governments.

The massiveness of the CDPQ’s investment commitment shows that it is confident that the project will succeed. The CDPQ’s case study clearly identified the potential to bring serious benefits for transit riders, and its clearly identified rationale for choosing driverless train technology dignifies its success here in Metro Vancouver and around the world.

Download the case study

Significant improvements in transit service

Map of the new system, showing connection points with existing rail transit in Montreal

The new system is expected to have 150,000 riders on opening year (2021), 65,000 higher than currently exist on those corridors.

To fulfill the expectation that the system will raise this ridership, the CDPQ has designed the project with an intense focus on travel time benefits and rider comfort. Focus was placed on making sure trains were accessible all-day, every day, with the project advertising that service will run 7 days a week for 20 hours, and much more frequently than existing commuter rail service. CDPQ also focused on ensuring the system had quality amenities such as a free wi-fi network along the line for all commuters.

SkyTrain cited as inspiration

Montreal benefits
The REM case study cites SkyTrain as an example for development success.

In addition to the improvements in transit service, over $5 billion in economic development is expected to be attracted along the line, with Vancouver and the Canada Line cited as the primary example. The construction process is expected to contribute $3 billion to the GDP, and the reduction in road congestion is expected to reduce economic losses of $1.4 billion per year and 16,800 tonnes of greenhouse gas emissions every year.

Following the SkyTrain model

Caisse was one of the private investors in the private consortium chosen to build the highly successful Canada Line rapid transit project back in 2009. Caisse’s experience from co-investing in the Canada Line, and then co-experiencing its record ridership numbers well above target while billions in economic growth is spurred along the line, appears to be directly translating into the choices of station spacing, technology and level of investment on the REM.

These choices are remarkably similar to the ones that we have made with transit here in Vancouver – as an example, we also repurposed an existing tunnel for our driverless SkyTrain system – and would suggest that Greater Montreal is on its way to a transit future that is sustainable to maintain and feasible to expand. Here in Vancouver, we’ve managed to expand rail transit faster than every other city in Canada, while our system boasts an exceptional system ridership record that is envied throughout North America by other cities.

Just like our SkyTrain system, the system will make use of shorter trains (2-car trains off-peak, joined to form 4-car trains during peak hours) at a higher frequency, providing the same capacity as longer trains at a lower frequency.

2-car SkyTrain approaches Brentwood Station on the Millennium Line
SkyTrain pioneered driverless train technology. Seen here, a 2-car SkyTrain approaches Brentwood Station on the Millennium Line. By sillygwalio, CC-BY

With 24 stations over 67km, the station spacing means that the REM is a cross between suburban/commuter rail and urban rail.

The new proposal in Montreal looks a lot like the Canada Line of our SkyTrain system.

The spacing is wider, resulting in faster service, in outer areas where rapid transit is competing against commuting by car and localized access is not its main purpose. However, it condenses in inner areas where the line can then double its purpose and act an urban rapid transit link. This is similar to what is done by our SkyTrain system here.

To top things off, the system includes an airport branch which is similar to what was done with our very own Canada Line. This approach to integrating airport service with other nearby urban rapid transit service is different from what was done in Toronto with the construction of its dedicated Union-Pearson Express train, which was heavily criticized for its high fares.

Train technology

REM cars

The concept 2-car trains (which are joined to form 4-car trains during rush hour) look similar to the Bombardier ART and Innovia trains being used here in Metro Vancouver. The system will share the same 80m platform lengths used by our Expo and Millennium Lines.

The project mentions that they will be “electric light metro” cars that use overhead catenary power, presumably to capitalize on the existing commuter rail infrastructure on the Deux-Montagnes line and through the Mount Royal Tunnel. While it’s plausible that the trains will be using conventional propulsion technology, the train size and specs suggest that linear motor train technology as used in our Expo and Millennium Line could be adopted.

A 2-car Tokyo Metro 01-series train now in service in Kumamoto. These trains were outfitted with overhead catenaries for Kumamoto’s railway, after using third-rail power for years on Tokyo’s busiest city subway line. By hyolee2, CC-BY-SA

Bombardier currently offers its Innovia Metro trains (used on our SkyTrain system) with third rail propulsion options, but it would not be difficult to modify the design to take overhead power. Existing third rail trains can be easily modified and outfitted with pantographs.

In Japan, which is home to the world’s most well-built railway and transit networks, this is done regularly when used trains are passed on from big city to smaller-scale transit operators.

As an example, last year a number of Tokyo Metro Series 01 train cars, which were used on the city’s busiest Ginza Line, were transferred to a local railway in Kumamoto, which required the installation of an overhead catenary and other modifications (whereas the previous metro line was a third-rail subway).

See also: Montreal may use SkyTrain technology for Champlain Bridge “LRT”

I have previously commented on how Montreal rail rapid transit projects have specified trains that are similar to those used on our SkyTrain system. This proposal, which actually encompasses many of the same corridors, continues that trend, and it is becoming increasingly likely that a full ALRT adoption is going to be used.

The cost rationale for going driverless

Driverless winning
The total length of automated metro lines is expected to triple by 2025.

Greater Vancouver pioneered driverless rapid transit when SkyTrain was introduced more than 30 years ago, utilizing what was then the latest technology developed by Alcatel and UTDC. Since then, other systems have been built in numerous cities around the world. According to the International Association of Public Transport (UITP), 35 cities around the world operated 52 automated metro lines, spanning over 700km, in 2014. This is expected to increase three-fold to over 2000km by 2021.

Automation brings many operational advantages, in particular, increased safety and flexibility in operation, unrivalled reliability, and more attractive job profiles for the staff on the line. Building on these strengths, metro operating companies can seize on automation as a lever for change at all company levels: operational, maintenance and customer service.
 
(UITP automation report)

One of the more obvious ways that a driver-less system saves money is with the reduction in staffing (no drivers on each of the many trains), headroom is created to operate much more frequent service during less busy weekends and off-peak hours, without incurring an operating cost penalty.

However, the REM’s design choices also show how driver-less train systems can also create the flexibility to save on the project capital cost while maintaining the highest quality of service.

The western proportion of the REM proposal has 3 separate lines that merge into a single lane heading into Montreal City Centre.
The western proportion of the REM proposal has 3 separate lines, which merge into a single line heading into Montreal City Centre.

With service frequencies as high as every 2 minutes in the central portion of the line through Montreal City Centre (and potentially higher as ridership increases), driver-less technology is what fosters the potential to combine the no less than 3 forking lines to the west, each already operating at a high frequency, into a single line heading into the city core.

Traditional, driver-operated commuter railways do not always benefit from the ability to merge lines, as the lower permitted frequencies and longer train sizes make running at such high frequencies prohibitive and infeasible. As an example, in Osaka, Japan, the 3 ‘Hankyu’ commuter train line branches serving the areas north of the main city enter the city core on a wide 6-track right-of-way, including a 6-track bridge over the Umeda River. Each line gets its own set of tracks and is operated separately from one another.

Osaka, Japan's 'Hankyu' commuter train lines have 3 branches that converge for the final segment into the City Centre. Each line gets its own set its tracks, and crosses the Umeda River into the city core on a 6-track bridge. Montreal's REM proposal is using driverless technology to avoid this setup, with 3 forking lines merging into a single line and using driverless technology to travel into the city core at high frequencies.
The Hankyu bridge into Osaka’s Umeda Station. By GORIMON, CC-BY-NC

Montreal’s REM proposal is using driverless technology to avoid this setup, utilizing driverless technology to have trains from 3 different lines travel into the city core at very high frequencies – without the need for separate tracks, additional tunnels and viaducts, and larger infrastructure, meaning costs and land footprint are significantly reduced.

It is clear why CDPQ is choosing a driverless, automated light metro system – the higher frequencies allow for capacities that are comparable or better despite shorter platforms, and compared to an investment in heavy commuter rail, the REM’s choice for driverless train technology could be saving billions upon billions of dollars.

Opening to public in 2020

Concept image of an REM station

One of the marvellous things about the R.E.M. plan is the speed at which the CDPQ wishes to set it up. With a clear business case and clear benefits presenting the opportunity to quickly approve funding from the provincial and federal governments, construction is expected to start in Spring of 2017, approximately 1 year from now.

The line will then open in 2020, with construction sped up by the well-planned re-use of existing rights-of-way and tunnels, and its integration with other projects such as the new Champlain Bridge.

Despite what could be seen as challenges due to the cost, the REM proposal, and the speed at which it will be ready for service, is a showcase of what happens when all parties can come together with a great plan and a great business case. Moreover, driverless train technology, which was pioneered and made extremely successful here in Vancouver, is the basis of this proposal.

See also: The Problem with SkyTrain Critics – Denying the Benefits

I think I am most delighted by the indication that driverless train lines are still worth building and make a lot of sense for urbanized cities. Many of Vancouver’s SkyTrain expansion critics seem to think that isn’t the case.

My guess is that once the REM is complete and its success plays out, its success could very well trigger a rapid transit planning revolution and the mass spread of driverless train systems throughout world cities. Canada will not only be the country that pioneered this technology – but also the world leader in implementing it, with two of the world’s longest driverless systems in Montreal and in Vancouver.

Sendai celebrates SkyTrain technology with opening of new Tozai Line

sendai-map
Sendai Subway map showing the new Tozai Line (east-west line in blue)

The sun is rising over a quiet city, where the lights inside 13 new rapid transit stations turn on and the first station staff make their way down the relatively unused escalators to prepare to open the platforms for the first wave of customers.

The familiar hum of a linear induction motor system populates the station as the first of 15 four-car trains rolls in from the maintenance yard, ready to board passengers for the first service of the day.

If you think I’m describing an event in Vancouver, you would be wrong because I am describing what’s happening right now in a major Japanese city, one that decided to build a brand new rapid transit line with the same SkyTrain technology developed in Canada and pioneered here in Vancouver.

See: New subway line opens in disaster-hit Sendai – The Japan Times

Sendai, Japan is the city that was hit hard during the March 11, 2011 Tohoku earthquake and tsunami. The completion of the new Tozai Line, a 14km rapid transit subway with both underground and elevated stations, has turned the page for the city, marking its vibrance and prosperity as it progresses in its recovery from the devastation of 4 years ago.

I went back to Sendai for a business trip, and it also happened to be the day the Tozai line opened to the public. It was crazy! The city and its people are treating it like a big event!
-Ryukyurhymer from Skyscrapercity (LINK)

Videos and photos of the launch celebrations show thousands of people making use of the new system, and celebrations ranging from idol girl groups performing on the station platforms, local sports team mascots out to celebrate, men in samurai outfits, traditional dance performances on board the trains, and picnics at the park beside the train’s visible elevated section. It is a lively hustle and bustle and the mood appears to be as festive as when I visited Sendai just 4 months ago to attend the city’s most famous Tanabata Festival, as part of my 1-year Japan studies journey. It is arguably the biggest occurrence in the city since this August and the biggest revolution for the city since the first steps in recovery were made after 2011.

Pictures from TransLink of mockup Mark III Skytrain vehicle
SkyTrain technology was developed in Canada and pioneered right here in Vancouver.

Since the first km of demonstration track opened in early 1983 here in Vancouver, SkyTrain technology has made its way around the world with just over 20 systems complete or being proposed in 15 cities worldwide. We have reinvested in it and expanded our system several times, yet we’ve been overtaken by a certain Guangzhou, China that has made a monstrous investment in this technology with over 99km of track – reaching 130km by next year.

Sendai’s will to revitalize their city with the help of a technology pioneered here in Vancouver, Canada should be seen as a wonderful treat and a mark of our contributions to this technology’s progress, and a reminder of the big impacts we can make with choices that we would otherwise deem irrelevant. Sendai’s choice of SkyTrain technology will help the city fast-track its ongoing recovery from the events of 4 years ago.

The line will serve 80,000 riders a day next year, with an additional 3% more estimated to come each year and grow the system’s ridership. According to the schedule on the city’s website, trains will run every 3-4 minutes during peak hours and no less frequently than every 7.5 minutes at off-peak times and weekends – an excellent service standard for a medium-sized city of 1 million people.

The new line is already enabling new transit-oriented development nodes in the city, maximizing the line’s potential and giving a nod to the transit-oriented development practices that Greater Vancouver pioneered for every city in North America.

In an area around Arai Station, work to establish a new community of nearly 20,000 people is progressing. Public apartments have been built for those affected by the tsunami, with people moving there from areas closer to the Pacific coast as part of a collective relocation program. (The Japan Times)

We should celebrate a technology that’s made an impact around the world

As a result of the practical research for three years from Fiscal 1985, we confirmed that low-cost subway “Linear Metro” that has been developed as a public transport is suitable for regional hub city as a semi-main metropolitan line or branch line. For this reason, the Japan Subway Association established the “Linear Metro Promotion Headquarters” within the association in October 1988.

ml98pr_fig2
Comparison of conventional subways and linear motor subways. From Osaka Municipal Transportation Bureau’s info page on LIM technology

Japanese researchers started studying linear induction motors (LIMs) as train propulsion in 1985. After Osaka built Japan’s first LIM line (the Nagahori Tsurumi-Ryokuchi line), it was found that the city had saved approximately 20% in construction costs. This is one of the key advantages that come with LIMs – the less-complicated motors enable trains to have lower platform heights, which  means tunnels can be significantly smaller and less costly without impacting the quality of service. There is no doubt that with the majority of Sendai’s new subway line tunneled, millions in cost savings were found with the use of SkyTrain technology.

This same advantage was directly to blame for the use of an existing railway tunnel on our Expo Line SkyTrain downtown, a choice that saved us hundreds of millions of dollars as a traditional light rail system would have required new and larger tunnels to be dug under our downtown core.

“The new line is a symbol of development for the disaster-hit Arai district. I hope the Tozai Line will play a major role in leading the city.”
– Emiko Okuyama, Mayor of Sendai (The Japan Times)

See also: List of Linear induction motor rapid transit systems

Sendai’s system brings the amount of in-service SkyTrain technology systems from 17 to 18. 14 cities/areas are currently using SkyTrain technology, and a 15th (Okinawa Island, also in Japan) has declared its use for a major future transit investment.

I am pleased to hear about and report on this successful launch, and I encourage all of us in Vancouver to cheer this Japanese city and its people in celebrating a brand new era of progress and motion.

Local news report (Japanese)

Watch trains arrive and depart at Sendai Central Station

NEWSLETTER: Next Surrey Mayor should support SkyTrain

Concept image of at-grade LRT on 104 Ave
Concept image of at-grade LRT on 104 Ave. Notice the reduction in through traffic lanes.
“The LRT or BRT plan to Guildford is very inconsiderate… Never mind the permanent effects – during construction, Guildford residents will be giving up quality transit altogether. Commute times to Surrey Central will double or worsen as 96 B-Line buses must share that one lane of traffic or detour.” All this for several (four plus) years to save one minute using the LRT.

If anything, these words probably highlight one of my original reasons to oppose the Surrey Light Rail transit plan, then as a resident of the Guildford area of Surrey. This later materialized into a strong research effort and the establishment of an advocacy website (skytrainforsurrey.org), one of my biggest efforts since I started discussing transportation and politics issues throughout this region.

My support for SkyTrain-type rapid transit in most any situation, something I understand a lot of you criticize me for, is probably no secret. Yesterday, in a gesture of support for planned SkyTrain on Broadway, I launched an article criticizing one planner’s poorly laid “alternative”. It was a big hit, achieving an April-May viewcount record for my blog and becoming a popular discussion topic on other blogs and boards such as on reddit.

See also: SkyTrain critic’s alternative to Broadway subway is half-baked

Now that I’m returning to this long-time advocacy priority of SkyTrain for Surrey, I hope to engage the same type of discussion. This is beginning to materialize: the Now just published a newsletter I sent encouraging the next running Mayor for Surrey to show some support for SkyTrain as a rapid transit alternative for Surrey. You can read the new letter in today’s Surrey Now issue or here online.

LETTER: I want Surrey’s next mayor to support SkyTrain – Surrey Now

One reader is adamant that expanding SkyTrain would serve Surrey much better than Light Rail Transit.

The Editor,

Surrey’s departing Mayor Dianne Watts told reporters at city hall one of the things she regrets is that she couldn’t secure Light Rail Transit (LRT) for this city, which will probably do all of us very good.

It was three years ago when she announced her LRT ambitions on the basis that SkyTrain is too expensive and disruptive. But SkyTrain has spurred billions in real estate, building entire communities like Metrotown, Brentwood and downtown Richmond. It’s building our city centre right now and is what’s responsible for making it a more vibrant area.

Because of SkyTrain, Metro Vancouver’s transit system isleading in ridership attraction in North America– ranking third in transit trips per person per year, behind only New York and Toronto. We’re ahead of Montreal, Boston, and Washington D.C. – cities with full-size metro systems – and far ahead of cities with only LRT systems.

LRT has its own downsides. It’s slower, vulnerable to accidents, and we don’t get many transportation benefits. A study suggested the monetary value of LRT’s benefits will not recover costs.

There are other implications. The LRT or BRT plan to Guildford is very inconsiderate, removing two traffic lanes on 104th Avenue. Never mind the permanent effects – during construction, Guildford residents will be giving up quality transit altogether. Commute times to Surrey Central will double or worsen as 96 B-Line buses must share that one lane of traffic or detour. Graduating students and Guildford’s many low-income residents won’t find the options they need to manage busy lives, access jobs and get to classes.

All this for several (four plus) years to save one minute using the LRT.

SkyTrain can cost more money to build but will give us actually veritable benefits. Imagine this: vibrant communities and productive citizens. Less traffic and safer roads. Newton to Guildford in 13 minutes.

Our high-quality, grade-separated rapid transit system gives us these benefits and more, and I want to see the next Surrey mayor pushing for SkyTrain.

Daryl Dela Cruz, Surrey

Toronto rapid transit review recommends SkyTrain expansion over LRT

Scarborough RT
A Scarborough RT train in Toronto boards passengers. The Scarborough RT uses the same propulsion technology as Vancouver’s SkyTrain system, using a fleet of Mark I cars.

Looks like my calls are being echoed in the City of Toronto. Someone out there is seriously listening to me, for I had previously proposed the very idea this think tank is proposing through Better Surrey Rapid Transit (SkyTrain for Surrey), in an attempt to communicate to people that SkyTrain expansion can make sense.

I have been pushing for quite some years now for a SkyTrain expansion in my home city (Surrey) over the current Light Rail expansion plan on account of SkyTrain making a lot more sense (most of you reading probably know this of me). As part of that, I went ahead and applied some of my thinking onto Toronto’s transit proposals in a special article I wrote regarding the under-construction Eglinton Crosstown Line. I published that write-up more than 1.5 years ago, in March 2012.

The use of [SkyTrain technology] would provide the same cost savings that moving a portion of the LRT at-grade would and more, despite a need for complete grade separation.  It would provide faster, more reliable service and be more flexible in capacity expansion, and also remove the travel time penalty associated with at-grade LRT.
[READ MORE – “The Compromise is SkyTrain – Toronto should be pursuing this technology and not LRT on Eglinton” on SkyTrain for Surrey]

I supposed that using linear motor-propulsion “ALRT” (also known by some critics here as “SkyTrain technology”) would cut down on the Eglinton Crosstown Line’s tunnel size and tunneling costs (the LRT is being built with a 6.5m diameter tunnel, whereas SkyTrain technology requires just a 5.3m diameter tunnel), saving billions and billions of dollars, and opening up the room for grade-separating the rest of the line and providing better service throughout, increasing ridership numbers and improving the business case. The Crosstown Line is currently being built for at-grade LRT technology, assuming that further expansions would be at-grade.

A map of the Eglinton Crosstown LRT in contrast to Toronto's current rapid transit system
A map of the Eglinton Crosstown LRT in contrast to Toronto’s current rapid transit system

The Neptis Foundation yesterday submitted a very bold critique of the Metrolinx “Big Move” plan that seems to agree with a lot of my previous propositions. The 144-page study recommends a different Toronto rapid transit plan than the one being recommended by Metrolinx. It thinks in the same way I have thought, in that leveraging the Scarborough RT’s ALRT/SkyTrain technology and extending it would make more financial and practical sense than the current proposal to build LRT.

Business case of LRT proposals vs. study's SkyTrain proposal [CLICK TO ENLARGE]
Neither Metrolinx nor TTC seems to have given serious consideration to development of Scarborough and Eglinton Crosstown lines using ALRT or similar “light metro” technology. This technology has been applied very successfully in more than 20 cities around the world. 89 Some architects and urban designers prefer surface LRT, because it is less visually intrusive, and can run in mixed traffic and pedestrian environments, albeit at much lower speeds. But faster services on exclusive rights-of-way are far more effective, and efficient, at getting motorists to switch to transit.
The Toronto LRT schemes could be greatly improved by building them with fully exclusive rights of way, perhaps automated ALRT or similar technology. Ridership would be much higher, as would the benefits to the region. And the costs could actually be less.
[READ THE FULL REPORT – CLICK HERE]

The author, a UK-based railway consultant, is calling for the full package: a switch of the Eglinton LRT line to a SkyTrain-technology ALRT line with driverless train automation, grade-separation of the full line (including Phase II) to offer faster journeys, and shorter station platforms (appropriate given higher train frequency). He cites that such a setup would generate more than twice the benefits and cost half as much per new daily transit rider. This is based largely on the basis that as a faster SkyTrain-type line it could provide better service and attract more ridership, which is very sound. It isn’t rocket science: when compared against light rail transit systems throughout North America, our 68km SkyTrain system here in Metro Vancouver is outperforming all of them in ridership numbers. There is value in better rapid transit service.

Here is one excellent question I would like to highlight: the study questions a proposal to refurbish the existing Scarborough RT line (a 1980s-era SkyTrain technology line traversing eastern Toronto), noting that the costs to refurbish the RT line to use LRT technology are higher per kilometre than the from-scratch SkyTrain construction costs for the Evergreen Line in Vancouver:

At $1.8 billion for 10 km, the Scarborough LRT line would be considerably more expensive than the Sheppard Line, 68 or about $180 million per km. About half the cost is for conversion of the existing 6.5-km RT to accommodate low-floor LRT cars, with overhead power collection. This involves substantial reconstruction of six intermediate stations, and complete reconstruction of Kennedy Station to provide a larger underground loop, and track connection with the Eglinton LRT so TTC can exchange cars for maintenance purposes (but not for through-running with passengers). The balance is for construction of 4 km of new line, mostly elevated, from McCowan to Sheppard Avenue.
Note that at $180 million per km, the cost per km for the Scarborough RT is about 30% higher than the cost of the Evergreen Line, a fully grade-separated ALRT line in Vancouver, even though the Scarborough line uses mostly existing infrastructure, and otherwise operates through a broadly similar corridor.
Concept: Douglas-Lafarge Lake SkyTrain Station on the Evergreen Line SkyTrain
Concept: Douglas-Lafarge Lake Station on the Evergreen Line SkyTrain

The study recommends building on SkyTrain technology on account of finding that the LRT proposals in Transit City and following plans had low (or negative) benefit:cost ratios, in exactly the same manner as I am recommending SkyTrain technology in Surrey based on a negative benefit:cost ratio for LRT – and does a great job at making a case for it, addressing issues raised with capacity and size of rolling stock, among other things.

The author officially proposes the “Scarborough Wye” concept, for 3 rapid transit lines using SkyTrain technology: the existing Scarborough RT with renewed infrastructure, its extension to Malvern Centre, and a new line from Scarborough Centre to North York via an elevated right-of-way in the centre of the 401 Freeway and down the existing Sheppard Subway tunnels. He makes the case that the whole concept could be built for an outstandingly low cost per new transit rider and a high benefit-cost ratio – better than any of the LRT proposals that have gone through thus far.

Scarborough Wye proposal from Toronto transit plan critique; CLICK TO ENLARGE
Scarborough Wye proposal from Toronto transit plan critique; CLICK TO ENLARGE

We can only wonder if the common sense overflowing from this study could possibly prevail in the upcoming decisions at TTC and Metrolinx, and I hope something moves forward because it does look like SkyTrain technology is the solution for providing a lot of high quality transit. I think it would send a good message across Canada and to Metro Vancouver’s decision-makers and planning authorities as well.

More on Michael Schabas, the study author

Michael Schabas is a UK-based railway consultant who has been involved in launching several new railway projects and businesses.

With a background in urban rail projects in the Canada and the United States, he came to London in 1988 as Vice President for Transport for Olympia & York (O&Y), who were developing the Canary Wharf project in London Docklands. He led O&Y’s involvement in planning and promotion of the Jubilee Line Extension, and also instigated the re-signalling and re-engineering of the Docklands Light Railway.

Between 1981-1986, he worked for the UTDC (Urban Transportation Development Corporation) and was involved in the early development of the automated rapid transit technology used in Vancouver’s SkyTrain system.

Source: Wikipedia; Also see: his website