Our SkyTrain formula is a winning formula

When the Evergreen Extension opens on Friday, the Metro Vancouver SkyTrain system will span 79.5 km and be:

I want you to process that for a moment. In just a few days on December 2nd, 2016, Metro Vancouver will have achieved a victory in the rapid transit game among cities in Canada.

That is, we’ll have the longest rail rapid transit system in Canada right here in the Lower Mainland, which also expanded at the fastest rate among Canadian Cities. All the while, at its utilization rates per km, SkyTrain is beating every Light Rail Transit system in Canada and the U.S. in ridership.

Yesterday night I posted an update (see: Yes, the Evergreen Line was cost-efficient) to my 2015 study of Canadian rapid transit projects that looked into the costs of our projects relative to their level of grade-separation. In it I detailed on how some rapid transit projects, despite exhibiting a higher amount of grade-separation, are below the trend line for capital costs relative to amount of grade-separation. That means we are delivering higher-quality transit for the same cost as one might have paid in another Canadian city for a grade-level LRT system.

What doesn’t seem to be well understood in this region is that we are doing well in delivering rapid transit projects with high cost-efficiency and cost-effectiveness, and that there are good reasons for this, related to design choices we make in our projects – including our choice to have full grade-separation.

mark-iii-header

Some of the reasons that extensions of Vancouver’s SkyTrain system have been delivered more cost-efficiently than other rail transit projects in Canada include the following:

Smaller tunnels: the Linear Induction Motor (LIM) technology used on our Expo & Millennium Lines enables lower vehicle heights, which in-turn enables us to use smaller tunnels. Smaller tunnels require smaller tunnel boring machines and are less costly to build. Lower vehicle heights also helped us commission the downtown Dunsmuir Tunnel on the Expo Line for its current transit use. The then-abandoned tunnel accommodated freight trains on a single deck; the tunnel was retrofitted into two decks to accommodate our low-height LIM Expo Line trains. Utilizing the Dunsmuir Tunnel likely saved hundreds of millions of dollars in downtown tunneling costs for rapid transit and ensured that rapid transit had stations to connect to the Burrard and Granville downtown corridors.

Lighter guideways: LIM technology also enables our rail vehicles to be lighter than comparable vehicles with standard rotary motor technology, resulting in lighter guideways that require less material and can be built to support lower weights.

Smaller stations: The driver-less, automated signalling system used by SkyTrain enables our system to provide a high capacity by combining a higher frequency with shorter trains, whereas traditionally signalled systems may require longer trains to maintain cost-efficiency, with each train manned by a driver. This enables our system to have smaller and less costly stations. (The downfall with this is that sometimes stations are configured to be so small that they appear to constrain capacity, although it is debatable whether or not this is actually true – see: Canada Line)

Smaller OMC requirements: Operations & maintenance (OMC) facilities can require lots of land, which is expensive in Metro Vancouver, for storage and maintenance of trains. Our SkyTrain extensions have generally had much smaller OMC requirements for three main reasons:

• The driver-less control system reduces the equipment and space required in the yard
• Driver-less signalling allows trains to be parked at track stubs & sidings when out of service; on a traditional system all trains would return to OMC so that drivers can embark/disembark
• Extending our current systems & technologies reduces/removes the need for additional OMC facilities to accommodate other systems & technologies.

Excellent outcomes: The combination of all of the above factors plus design choices like full grade-sepraration, driverless operation to reduce operating costs, high frequencies, integration with the overall transit network and strong anchors/destinations on the lines results in a ridership and fare revenue outcome that not only makes Vancouver a leader among North American cities, but helps keep the entire transit network stable and sustainable to allow the system to expand further and be even better.

Altogether, these reasons combine to form what I would like to term the SkyTrain formula.

It’s understandable to see that with Vancouver forging a different path than the rest of the country in terms of design choice (other metropolitan areas, except maybe for Montreal, only ever talk about subways and LRTs and nothing else), there’s bound to be lots of criticism, doubt and worry.

However, the numbers do say that at the end of the day, the SkyTrain formula is a winning formula: it has resulted in some of the fastest and most cost-efficient rapid transit expansion in Canada. I think that’s something we need to be proud of – but more than that, it’s also something worthy of attention for all Canadian cities that are looking to build more transit.

Yes, the Evergreen Line was cost-efficient

Approximately a year ago on this blog I compiled a study of Canadian rapid transit projects, ranking their costs by their amounts of grade-separation (as well as the amounts of their grade-separation sub-types, such as above or below-grade). My goal was to offer decision-makers and planners the first proper data-set from which it could be assessed whether the level of grade-separation in Canadian transit projects is worthwhile, and cost-efficient relative to other projects in the country.

Today I have to release an update for this data-set, because some budgetary news concerning the Millennium Line’s Evergreen Extension has been released. According to the new info, the Evergreen Extension is now set to open at a cost of between $70 and $85 million under budget, although the opening was delayed multiple times – first due to uncertainty of funding, and – more recently – due to engineering challenges for the 2km bored tunnel.

Jpeg
The Evergreen Extension is finally set to open on Friday, Dec 2nd.

Initially, I chose to focus on grade-separation because of how much it is a contentious topic here in Metro Vancouver (I, for one, am caught in the fray leading a campaign that is devoted to seeing rail rapid transit expansion in that part of the region be fully grade-separated).

Full grade-separation of transit brings reliability, faster speeds and lower risk of accidents like the pedestrian-train collision just yesterday in Calgary that closed down both directions of the C-Train LRT system for nearly 4 hours. Critics of grade-separation have countered that it grade-separation is not necessary for reliable service and makes transit projects too expensive. However, as it turns out, many of the rapid transit projects we’ve built in Canada without any grade-separation – or with very little of it – exhibited construction costs per km that were higher than fully grade-separated projects, such as our extensions of SkyTrain.

With the updated costs for today’s Evergreen Extension SkyTrain project, I wanted to see how its final costs would fare against other Canadian transit projects, and other major transit projects & proposals in our own metro area. I updated the scatter-plots I created for my study and came up with the following outcomes for the Evergreen Extension:

In terms of overall grade-separation, the Evergreen Extension is far below the trend-line for other projects in Canada, exhibiting a relatively low per-km cost of $122-$123 million despite over 75% of it being built above or below-grade (the remaining approximately 25% is built at-grade, but the line is still fully grade-separated with no crossings). Also, when above-grade separation is not considered and only below-grade separation is considered instead, the Evergreen Extension is at the trend-line for Canadian rapid transit projects, in terms of capital cost relative to percentage that is below-grade.

In short, even though a lot of people in the region don’t seem to believe it, the Evergreen Extension was delivered with a very high cost-efficiency.

I see this as a very important outcome, as the Evergreen Extension has been the subject of controversy not only for its numerous delays, but also for the context in which it was built. A 2008 decision by the provincial government switched the project from a then-planned street-level LRT to an extension of SkyTrain, based on a projection that there would be lower operating costs and higher ridership & convenience.

Concept: Douglas-Lafarge Lake SkyTrain Station on the Evergreen Line SkyTrain
Concept: Douglas-Lafarge Lake Station on the Millennium Line Evergreen Extension

Critics of the decision say that the LRT proposal expected construction to start in 2007 and finish by 2011; however, that was likely never possible, as some of my own digging (see post: The Real Evergreen Line Story) revealed that the design of the LRT project had still not been completed by that time in 2007 – and with much of the process shrouded in secrecy, we may never know of the potential issues planners faced trying to make an Evergreen Line LRT work.

Now, what I found particularly interesting is that my numbers aren’t only showing that the Evergreen Extension was cost-efficient, but other Metro Vancouver transit projects & proposals are below the trend-line average for rapid transit projects in the country in cost relative to grade-separation.

The Canada Line actually did even better than the Evergreen Extension, built nearly 50% below-grade for a bargain price of $116 million per km – prices found in projects with far less of their construction below-grade. The Broadway Extension, based on the last-available estimates from 2012 (adjusted for inflation, of course), is well below the national trend-line and has room to rise in cost-per-km while still remaining below the national trend-line relative to amount of grade-separation.

Today it’s not only the Evergreen Extension, but other much-needed transit projects in Metro Vancouver are facing scrutiny from observers over their capital costs, and the growing negativity is certainly not helping out these transit projects. It would seem that some of this is not deserved.


By the way, the Evergreen Extension is officially opening this Friday and I can’t wait! There will be celebrations and you can look forward to seeing me there as well as my SkyTrain for Surrey campaign team.

City of Surrey is neglecting safe crosswalks

2 children injured after family struck at Surrey crosswalk

CTV Vancouver; Published Wednesday, February 3, 2016 7:58AM PST ; Last Updated Wednesday, February 3, 2016 7:33PM PST

Police are reminding both drivers and pedestrians to pay more attention on the road after two young children and their mother were hit by a car as they crossed a street in Surrey.

A four-year-old girl and her six-year-old brother were crossing the road with their mom and dad around 6 p.m. Tuesday at 76th Avenue at 147A Street when three of them were struck.

The little girl suffered critical injuries and is in serious condition, and her brother was also seriously hurt. The mother suffered minor injuries.


I’ve been hearing of pedestrian crossing-related accidents in Surrey for years: Another day, another major crosswalk accident. And this time, it was an entire family – a mother and 2 children – struck while trying to cross the road, at a recently-built crosswalk in the east part of Newton.

I’m a busy person day-to-day – often, these issues show up on my news feed and then go away. The issue was just as said, there’s nothing else to report and it’s practically over. But, there was something about this particular issue that I couldn’t get out of my mind. CTV news did a very good report that showcased the incident crosswalk, and pointed out what issues have been had with it in the community. For most people, it’s an issue of speed. It’s an issue of traffic being unable to stop.

They don’t stop. They go more than 50… it’s all the time… nobody cares.
– Woman in red jacket on CTV report

How many times I come down this crosswalk to see people on the sides waiting to cross — nobody stops. Everyone’s in too much of a hurry.
– Scott Ogden, nearby resident

Watch as three vehicles blow right through, with a man trying to cross. Residents say this is common.
– CTV reporter

But the City’s Transportation Manager, Jaime Boan, can’t seem to have what these local residents are saying. He’s dismissed practically all of it, citing that:

Only two vehicle collisions there in the past five years — neither of them involving pedestrians.
– Jaime Boan, City of Surrey Transportation Manager 

and that the crosswalk “doesn’t fit the criteria for a lit crosswalk”.

Questionable criteria

Firstly, I don’t know how valid it is to cite that this crossing had been statistically safe for the past 5 years when there was also no crosswalk, which would understandably mean there are more crossings today as a crosswalk is now actually built for regular use. And secondly, I have found the criteria the City uses to decide on crosswalks to be questionable and far too conservative.

Picture of the 128 Street crash from 2013. Taken by CBC News

If you’ve been a reader of this blog, you may recall that just over 2 years ago, I took an issue with an accident that happened right by my University (in the post: “Political Incompetence Kills”). The City of Surrey flopped on building a badly-needed crosswalk, and subsequently a teenage girl was struck and killed by a motorcyclist.

Some of the people commenting on the news reports (and some of the news reports themselves) attributed this incident to jaywalking, but I later discovered that wasn’t the case. The fine lines between what is considered a legal crossing and what is considered “jaywalking” are set by each municipalities’ bylaws. In Surrey, you are legally crossing the street if a proper crosswalk is more than 1 block away, meaning Amarpreet Sivia (the victim) crossed the street legally when she was fatally involved in the motorcycle incident.

Since that incident has occurred, the City of Surrey has responded to media concerns by expediting the construction of a traffic signal. That traffic signal had been requested 3 years prior by the nearby school, but initially rejected because – like in this incident – a crosswalk had been deemed unnecessary. In order to prove the opposite, a teenage girl died. This is something we need to prevent in future incidents by investing in safer, properly-designed crosswalks now, not later. We can’t afford to wait.

Behind the Mayor’s boasting that Surrey has the lowest taxes in the region is the fact that Surrey dedicates just $4.95 million a year to pedestrian/cycling infrastructure projects – less than half the dedication put forward by Vancouver, despite that Surrey is bigger than Vancouver in size and will soon eclipse it too in population.
– From my original post in September 2013: “Political Incompetence Kills”

If this had been done previously, it would have saved a girls life. Instead the traffic signal was brought to life by the urgency of her example, sitting no less than a block away from my classes at Kwantlen, used by students daily unbeknownst to the fact that it was expedited due to a girl’s death.

Stooping even lower

This time, however, I think the City stooped even lower than it did back in 2013. Going back to what was said by City Transportation Manager Jaime Boan…

Only two vehicle collisions there in the past five years — neither of them involving pedestrians.
– Jaime Boan, City of Surrey Transportation Manager 

What a clever excuse to let go of a legitimate issue that’s caused serious injury to an entire family. Right now, A four-year-old girl is clinging to life, while her brother, 6, is in serious condition. That alone should be grounds for a serious investigation of the safety of this crosswalk. I actually find it ironic that a City Engineer (and the transportation manager no less), who was asked to comment on this crosswalk, managed to miss this particular shortfall:

Crosswalk 1
From the CTV video showing a person attempting to cross at this specific crosswalk.

Because of the parked vehicle in the foreground, it is impossible to see that a pedestrian wishes to cross. It is also practically impossible to see the crosswalk sign. It’s the most basic rule established between drivers and pedestrians – that eye-contact is made before the crossing is attempted – but there is practically zero line-of-sight. Which also means that there is no room for a vehicle to slow-down to prevent an accident. Add that to the total lack of traffic calming on this street, and it’s no wonder that cars are blowing through this intersection one after the other – it’s practically impossible to tell whether anyone is crossing, much less that there even is a crosswalk – especially at night, when the incident occurred.

After checking with the City’s by-laws, which specify that one must not park within 15 metres of a crosswalk approach, the van in the video may have been parked there illegally. However, if the van belongs to the adjacent residence, then the City should have notified the owner that it would no longer be possible to park the van there and that it should be moved. Even then, the City should also have properly installed “no parking” or “no stopping” signs, which were not in place at the time of this incident and are not visible in the news video.

Regardless of these things, no attempt was made to create an intersection that is safer for crossing, as the intersection was not modified to bring the curb to the edge of the travel lane, which would also reduce crossing distances and make for an overall much safer crossing.

What needs to be done

Some of the people interviewed by the news suggested that this crosswalk needs to have a light – something that the City will probably debate forever with its “traffic statistics”, but it’s clear that regardless of whether or not a light is needed, the crosswalk that was built was poorly engineered. Marking a crosswalk defines a place for people to cross, but if the safety improvement aspect is to be fully realized, that crosswalk must be paired with changes to the roadway or intersection.

What should’ve been built at this crosswalk (and at any other unmarked intersections that may demand crossings) would resemble another crosswalk only two blocks to the west, where the roadway is narrowed so as to slow down vehicles, reduce crossing distances, and ensure eye contact can be made between pedestrians and vehicles:

Significantly better crosswalk

I find it ironic how this significantly better-designed crosswalk exists nearby, and yet the City of Surrey didn’t take it into account when it built the crosswalk ramps at the existing curb edges, did nothing about the parked vehicles, and completely ignored the line-of-sight.

You owe the people of Surrey an apology, Mr. Boan.

Actually, a lot of people in the City of Surrey might owe apologies. The reason I’m picking on Jaime Boan in particular is because of the dismissive explanation he provided in news interviews – which is also indicative of just how unwilling the City of Surrey is to fix its serious issues with (un)safe crosswalks.

Now, I’m not an engineer. My dad is, but I’m not – I’m just a plain old university student. I haven’t finished my degree in engineering… no less, I’m not even studying engineering. So I have practically no expertise on this matter at all. But it alarms me that a professional engineer (and no less, the manager of transportation in this City), supposedly far more trained than me on this issue, couldn’t nail down the simple, visible reasons why this crosswalk is unsafe. And it alarms me even more that he is now implying that it is still okay to use this crosswalk and that the City is planning to do nothing about it.

Perhaps it’s tempting to think that the stats will say everything, and perhaps it is true that this is the first time an accident has ever developed here at this location. But if there’s any Surrey crosswalk stat that needs to be told, it’s the fact that Surrey has the unfortunate distinction of being home to the highest ratio of pedestrian-related motor vehicle fatalities in the entire province. (according to: The Surrey Leader)

When an entire family is in the hospital because of something that is clearly a result of your (department’s) shortcoming, telling people dismissively that the city won’t consider changes at the problem intersection is absolutely unacceptable. Mr. Boan, you owe the people of Surrey an apology.

And in addition, this neighbourhood is owed a crosswalk redesign. Now.

I would encourage the City of Surrey to expedite efforts to redo this crosswalk right away, and perhaps redo the entire street so that vehicles are slowed down. The city should also expedite other needed safe crossings throughout the city.

The Real Evergreen Line Story

Summary: Most people are still asking the question of why the province decided to suddenly switch the Evergreen Line to SkyTrain technology in 2008. I think we should be asking questions about why the LRT design process suddenly stopped, with no reason, back in 2007.


It’s coming to our region, but it’s opening in 2017, which just happens to be yet another delay in a consecutive series. These Evergreen Line delays have injected a new wave of doubt among transit observers here in Metro Vancouver, who may remember a time not too long ago when the Evergreen Line was comparable to a hot potato – hardly anyone could come to an agreement about it.

During the late 2000s the Evergreen Line went through numerous hurdles that we worry about in transit issues today; ranging from funding shortages to planning issues to a lack of clarity in the political commitment to the line itself.

But, to some people, I can imagine the most perplexing thing about the Evergreen Line story was the controversial change from an at-grade Light Rail Transit system, to the currently-being built extension of the existing SkyTrain system. It took people by surprise, changed the focus of the discussion and was so significant that it caught the attention of transit bloggers in other Canadian cities.

The move was controversial because of the creation of a new business case released by the provincial government (hereafter referred to as the “2008 business case”) that overrode a previous business case released by TransLink (the “2006 business case”) for the Evergreen Line as an LRT. A following, final business case by the province(the “2010 business case”) adopted the results of the 2008 business case without making major changes to or addressing its supposed issues.

The new business case explained that its recommendation for SkyTrain (ALRT) on the current corridor was based on 4 key findings:

  1. Ridership – ALRT will produce two and a half times the ridership of Light Rail Transit (LRT) technology; this is consistent with the ridership goals in the Provincial Transit Plan.
  2. Travel Time – ALRT will move people almost twice as fast as LRT (in the NW corridor).
  3. Benefits and Cost – ALRT will achieve greater ridership and improved travel times at a capital cost of $1.4 billion, with overall benefit-cost ratio that favour ALRT over LRT.
  4. System Integration – ALRT will integrate into TransLink’s existing SkyTrain system more efficiently than LRT.

Light Rail advocates who looked into the study insisted that the new analysis, in its rejection of what was supposed to be a sound business case, was biased in favour of SkyTrain – some of which alleged that the switch was a result of insider connections, shady agreements, and other under-the-radar proceedings. 2008 was a time when it wasn’t as clear to people that SkyTrain isn’t a proprietary transit technology and it was probably no surprise that critics of the decision came in waves.

They were joined by others, including City Councils of the time, who expressed concern about some aspects of the newer business case. Two particular major players come into mind:

1. The City of Burnaby released a staff report that injected doubt into the Evergreen Line’s cost estimates, ridership estimates and evaluation. (See [HERE] for report)

“This report recommends that the Province and TransLink undertake to re-evaluate the choice of technology and prepare a business case of LRT technology for the Evergreen Line based on the concerns and questions raised in this report with regard to service speed, ridership estimates, operating and capital costs, inter-operability, community service and other factors.”

2. A Portland-based transportation engineer named Gerald Fox alleged that the analysis had been manipulated to favour SkyTrain. (The original letter was posted [HERE]).

“It is interesting how TransLink has used this cunning method of manipulating analysis to justify SkyTrain in corridor after corridor, and has thus succeeded in keeping its proprietary rail system expanding.”

At the time, no one could present an argument strong enough to combat what seemed to be a legitimate series of concerns on the SkyTrain proposal. The decisions of 2008 and the surrounding controversy continue to be reflected in the words of today’s writers, most recently surfacing with the announcement of the recent Evergreen Line delay and the ongoing SkyTrain versus LRT debate in Surrey.

However, when the Auditor General of British Columbia was asked to look into the Evergreen Line technology switch, the Auditor General’s finished report in 2013 concluded that while some information was missing, the switch to SkyTrain was the right decision.

The Auditor General summarized the missing information as a shortfall in explaining the following:

  • Options’ risks, costs and benefits;
  • Assumptions underpinning SkyTrain ridership;
  • Wider transit system risks and dependencies; and
  • How agencies would measure performance

In the approximately 3 years since this Audit was released and the 7 years since the decision to switch to SkyTrain, new information has been released that makes it possible to fill in all four of these gaps, as well as the other concerns raised by critics and the City of Burnaby.

In an effort to compile this new information, I performed the research myself, which included extensively looking into all business cases (2006, 2008 and 2010) and other supporting evidence (including all 61 archived pages of the original Evergreen Line LRT discussion thread on Skyscraperpage).  With the conclusion that the Evergreen Line business case was not manipulated to favour SkyTrain, I present my results below.

1. Were SkyTrain and LRT compared properly?

The first and foremost concern by the auditor general was that the SkyTrain and LRT options may not have been compared properly – as sufficient information on aspects like ridership wasn’t provided. An explanation of how the ridership estimates were conceived was not provided in the 2008 business case, but there is little reason to believe that the 2008 business case was wrong in assumptions.

The City of Burnaby’s staff report probably best summarized the issues that were raised surrounding the comparison. However, much of the research I performed has explained these perceived shortfalls:

Capital cost estimates

As the capital cost estimates for LRT increased from $970 million (2006 business case) to $1.25 billion (2008 business case) with little explanation, the City of Burnaby complained that this increase was unreasonable – especially as it brought the cost difference with SkyTrain down to a mere $150 million (12%). Light Rail advocates and critics, including Gerald Fox, complained that the cost increase was manipulated to favour SkyTrain.

It was noted in the 2006 study that the cost estimate of then was done at a 90% preliminary design stage – not a fully detailed design stage presenting a finalized cost. It thus seems conceivable that costs increased while the final alternative was being analyzed for the 2008 business case.

Recently I performed some research on the capital costs of Canadian rail transit systems. With several rapid transit and light rail systems now proposed across the country, I took the opportunity to compile an inflation-adjusted comparison of the project capital costs – adjusting each project for the amount of grade-separation (tunnelled or elevated) and using that as a guideline to compare the costs. This extensive research took me several weeks to complete as I had to manually measure most of the proposals to assess the amount of grade-separation.

See: Capital costs of Canadian rail transit systems

Unsurprisingly, I reached the conclusion that with the steepest trend in perecentage-to-cost, bored tunnel is the most expensive alignment to construct.

The Evergreen Line, no matter whether it were to be SkyTrain or Light Rail Transit, has a 2km bored tunnel as a part of its alignment through the mountainous terrain between Burquitlam and Port Moody. This accounts for about 20% of the entire route.

The Evergreen Line's 2006 estimate is marked by the "$99" at the bottom left. The 2008 estimate is the $112 above it.
(Open to enlarge) – The Evergreen Line’s 2006 estimate is marked by the “$99” at the bottom left. The 2008 estimate is the $112 above it.

My measurements indicated that the 2006 cost-per-km estimates were the lowest of the other projects. The estimate was significantly below other projects with a ~20% bored tunnel percentage, and below the average trend line that related percentage in a tunnel to rapid transit cost per km.

In other words, the 2006 cost estimates are too low and were probably incorrect.

And now that we know how much trouble it took to construct the Evergreen Line’s 2km tunnel, it’s certain that the LRT project’s final cost would have come closer to $1.25 billion. LRT tunnels need to account for pantographs and higher vehicle heights; whereas the linear motors used on our SkyTrain technology lines are more optimal for tunnels as the train is lower and closer to the ground. As a result, an LRT tunnel would have been larger and more complex and would have likely lead to additional potential problems.

Just imagine what kind of liability chaos there’d be if a sinkhole did open under a home above the tunnel route. It hasn’t happened with our SkyTrain tunnel, but it’d be more likely under a larger tunnel (and larger tunnel boring machine) needed for an LRT.

Operating costs

The operating costs rose from $12.21 million in 2006 to $15.3 million in 2008 (both measurements were in 2007 dollars). While it doesn’t seem that anyone in particular raised this as an issue, the cost increase can be explained by a difference in service frequency.

The 2006 business case’s estimate was based on a 6 minute initial operating frequency. The 2008 business case’s operating costs were based on a higher 5 minute initial operating frequency. Whereas the 2008 cost estimates are 25% higher while a 5 minute frequency is 20% higher than 6, the newer numbers seem just about right to me.

Travel times

The City of Burnaby’s assessment of travel times suggested that the SkyTrain alternative’s travel time estimates were far too high and the LRT alternative’s estimates were far too low. It provided this graphic to show the disparity:

Evergreen Line graphic
Open to enlarge

Burnaby complained that the Evergreen Line’s LRT speed estimates were lower than two existing LRT systems in Canada (Calgary and Edmonton). However, most of Calgary and Edmonton’s LRT systems are built off-street, and with gated crossings and absolute priority like railway systems. Most of the Evergreen Line as an LRT would be in the middle of streets and would have to follow the roadway speed limits (typically 50-60km/h). Naturally, this would result in slower average speeds than Calgary and Edmonton, where trains may run at 80km/h on dedicated rights-of-way.

While the SkyTrain alternative had much higher average speeds than the current system (with its average of 43km/h), the addition of Lincoln Station has added some length to the travel time to the extent that the Evegreen Line’s end-to-end travel time is now usually described as 15 minutes – an average speed of 43.6km/h.

Even then, at the end of the day these differences aren’t really dictated by the transit technology. The Evergreen Line will have the system’s longest station-less segment, which is largely in part due to the 2km tunnel between Burquitlam and Port Moody stations. The higher average speeds near here would be comparable to other long sections crossing geographical features, such as the 2.3km SkyBridge segment on the Expo Line over the Fraser River.

Maximum speed

Gerald Fox also raised an issue that the stated maximum LRT speed in the 2008 business case (60km/h) was lower than the potential speed limits that could be achieved in the off-street, 2km tunnel. The 2006 business case accounted for faster running speeds of up to 80km/h inside the tunnel.

However, the end-to-end travel time estimates in the 2008 business case were actually lower than that of the 2006 business case by 0.4 minutes.

Thus the 60km/h expression was probably meant to highlight the speed on most of the on-street sections (outside of the tunnel).

In conclusion

Based on the data I’ve collected above it doesn’t seem that SkyTrain and LRT were compared unfairly. There could’ve been better distribution of the info at hand, and some improvements in the planning process (like the addition of Lincoln Station from the beginning). However, no skewering of the numbers and manipulation to favour SkyTrain has taken place.

2. Was ridership over-estimated?

Ridership was an additional concern raised by the City of Burnaby, which complained that the ridership estimates for the SkyTrain option (at 2.1 million passengers annually/km) were too high,  and that the LRT ridership estimates were too low.

Open to enlarge
Open to enlarge

The LRT ridership estimates were said to be too low because they were lower than two existing Canadian LRT systems (40% lower than Calgary, and 9% lower than Edmonton). For the same reasons as I explained above, it’s not possible to put the Edmonton and Calgary systems in the same category as an Evergreen Line LRT. The Evergreen Line LRT is largely on-street; the Calgary and Edmonton systems are not, and tend to run on exclusive rights-of-way at speeds of 80km/h.

This leaves the high ridership estimates with the SkyTrain system. The auditor general raised an issue that the SkyTrain ridership assumptions with the Evergreen Line were made with assumptions that a completed transit network would be built by 2021 following the Provincial Transit Plan. This included SkyTrain extensions in Broadway and Surrey, neither of which will be built by 2021 based on the current situation.

Burnaby complained that at 2.10 million annual passengers per km, the estimates were higher than the existing SkyTrain system (1.60 million annual passengers per km) and thus much higher than would be realistic.

It’s important to note that the SkyTrain ridership estimate in Burnaby’s report was taken before the Canada Line to Richmond was introduced in 2009. The Canada Line’s opening broke ridership records with ridership almost immediately shooting up to its current level of 40.2 million passengers per year or over 120,000 per weekday – numbers that were well ahead of schedule even beat entire, city-wide LRT systems in ridership.

When this annual ridership is worked out per-km, the Canada Line is carrying 2.10 million annual passengers per km – the same amount that was projected for the Evergreen Line.

As costly as infrastructure like the Canada Line SkyTrain is, the investment has been proven worthy by the benefits to the tens of thousands of people using the system daily. The investment confidence that has resulted in our SkyTrain system expansions needs to be applied to the whole system.
As costly as infrastructure like the Canada Line SkyTrain is, the investment has been proven worthy by the benefits to the tens of thousands of people using the system daily.

A huge part of the reason the Canada Line was so successful was because efforts by the City of Richmond to make the elevated segment on No. 3 Road at-grade (like a light rail system) were defeated, resulting in the construction of a fully grade-separated line. The full grade-separation enabled higher trip speeds, which have been cited in rider surveys as the #1 most-liked aspect of the Canada Line system – outpacing every other favourable aspect mentioned by riders.

The Evergreen Line’s SkyTrain switch decision was largely based on favouring the faster travel-times and transferless journeys of a SkyTrain system. It’s thus conceivable that the Evergreen Line could see the same kind of ridership success that the Canada Line did.

3. Were the risks properly and thoroughly assessed?

The auditor general commented that the 2008 and 2010 business cases did not provide information on the risks that came with connecting Evergreen Line outcomes with the performance of other parts of our regional transit system. In particular, the Evergreen Line’s performance estimates did not account for the potential impacts of:

  1. the level and coverage of bus connector services on ridership;
  2. parking at the more popular Evergreen stations;
  3. changes to the West Coast Express (WCE), which provides peak commuter services for passengers who want to travel between the northeast Metro Vancouver and downtown Vancouver
  4. Evergreen services on those parts of the SkyTrain system that are near or at capacity in the commuting peak periods (for example, around Broadway station).

These concerns present significant risks and it is of my opinion that they should have been addressed.

However, accounting for these risks whenever a large transit priority is laid out in our region doesn’t seem to be common practice. The transit projects of today have continued the practice of tying performance estimates to grandiose plans for the rest of the regional transit system, like the transit vision crafted by the Regional Mayors’ Council that was defeated in the March 2015 referendum.

When the referendum went down the toilet, so too did the additional commitments to connecting bus service that would have been critical to the success of the included rapid transit projects. It’s raised concern among decision-makers such as Coquitlam Mayor Richard Stewart, for example, who raised a concern with the potential costs of increasing parking as additional bus services connecting to the Evergreen Line were rejected along with the other proposals.

Nevertheless, local governments have forged ahead in planning for these lines, despite the new risks created with the lack of a regional vision component. As I believe that there will be opportunities in the future to return to those other critical transit priorities, continuing planning is the best practice for moving these projects; it has certainly moved the Evergreen Line.

4.  How are we going to measure performance?

The last issue concerned the collection of performance data to measure performance after the line’s opening. No framework had been set in the 2008 and 2010 business cases, and the lack of such a framework would have a consequence on future transit planning.

However, the Auditor did acknowledge in his report that a framework could still be completed in time for the line’s opening. Although it remains to be said if the province has followed through on this recommendation, this issue isn’t relatively as much of a concern as the others as it has an immediate, clear solution.


So what’s the real “Evergreen Line Story”?

When the Evergreen Line was changed to a SkyTrain extension project in 2008, the switch came after an extended halt in design work and public consultation.

Like today’s rapid transit projects, the Evergreen Line was determined through a multiple-account evaluation that includes a Phase 1 (draft option comparison), Phase 2 (detailed option comparison) and a Phase 3 (finalized option comparison and detailed design). The 2006 study was finalized at the phase 2 stage, and it noted that its cost estimates were done at the 90% preliminary design stage.

After that, there was silence in the project design work.

At the time, there were plenty of issues around project funding (which can be backtracked to on the Skyscraperpage archives). I can understand delays with transit funding (still a very big issue with projects today) but the funding issue shouldn’t have delayed detailed design work on the Evergreen Line LRT project. We didn’t hear anything from planners, politicians or anyone involved regarding the project’s design until rumours of a major announcement surfaced in January 2008. The final business case that was then released in February had been completed by the province rather than TransLink.

So it honestly has me raising questions: what exactly was going on in there? Why did Evergreen Line design works come to a stop, and why didn’t the next phase of consultations take place? Perhaps the planners at TransLink realize they under-estimated the LRT costs, and had nervousy about going public with the news? Did local governments start losing confidence in the at-grade project’s business case?

There’s all these disconnects that don’t seem to make sense, and I would argue that this should have been of far greater concern than the provincial government’s decision to switch the project to SkyTrain. It’s not the province’s fault the planning department of the time had decided to cut us off for just over a year on the project’s progress. It’s almost as if the sudden switch to SkyTrain was a measure to deal with these problems.

All I do know is that in October 2007, the B.C. Finance minister came to the public with a statement that the Evergreen Line’s progress had indeed been frozen, but that it wasn’t due to the funding shortfall

“The premier did say last week that the Evergreen will be built,” Taylor said. “The funding is not holding it up. They haven’t decided on exactly the route and exactly the stops. So, we have made the commitment to financially be there when everybody’s ready to go.”

Evergreen Line not held up by funding, finance minister says – Coquitlam NOW

This almost certainly indicates that the LRT planning department had run into issues with the design, since the 2006 business case had anticipated the start of construction by September 2007.

Instead, in October 2007 the design hadn’t been finished and the planners in-charge “hadn’t decided on exactly the route and exactly the stops.”

You be the judge, but it sounds a heck of a lot like that the province managed to narrowly get us out of an Evergreen Line LRT fiasco in its decision to build SkyTrain instead.


Jaded by SkyTrain and a lack of LRT

There hasn’t been a single, grade-level Light Rail project approved in this region except for the currently proposed project in Surrey, and that’s probably what has raised the irk of some people who have been enthusiastic about the idea of at-grade rail. It’s probably why there’s a commonly-held belief that only provincial government overrides result in SkyTrain, and that at-grade Light Rail systems don’t have major shortfalls of their own that have resulted in their rejection here in Metro Vancouver so far.

At-grade rail advocates argue that the lack of at-grade rail infrastructure in this region really caused us to lose out on transit benefits (i.e. we could have built a bigger transit network!) but at this point that’s entirely debatable.

I think part of this is because the benefits of SkyTrain (and how we’ve built it) don’t seem to be that clear to decision-makers, planners and transit enthusiasts in our region.

Despite the constant use of grade-separation and SkyTrain technology, Metro Vancouver’s SkyTrain network expanded at a faster pace than any other system in Canada. Vancouver’s rapid transit growth has lead Canadian cities – and when the Evergreen Line opens to the public next year, we’ll have the longest rapid transit system in Canada spanning nearly 80km – and the longest driverless transit network in the world. The lower operating costs of driverless trains make it possible to keep expanding our transit network without bankrupting our operating budget on the cost of drivers.

SkyTrain also has the highest ridership of any rapid transit system in North America that isn’t classified as “heavy” rail. At nearly 9,000 boarding passengers per kilometre, SkyTrain outperforms every single at-grade rail system in Canada and the U.S.

SkyTrain ridership/km vs. other transit systems

Data is from the American Public Transit Association (Q3 2014) unless stated

City System name (type) Weekday daily boardings Daily boardings/mile
Vancouver SkyTrain (driverless) 377,900 8,870
Calgary C-Train (LRT) 310,700 8,510
Boston MBTA light rail (LRT) 214,500 8,250
Edmonton Light Rail Transit (LRT) 98,144* 7,550
Toronto Streetcar (on-street) 281,900 5,525
San Francisco Muni Metro (LRT) 145,500 4,076
Houston METRORail (LRT) 45,700 3,571
Newark Newark/Hudson Bergen LRT 72,939** 3,143
Minneapolis METRO Light Rail (LRT) 64,500 2,938
Los Angeles Metro Rail (LRT) 203,400 2,892
Seattle Link Light Rail (LRT) 40,300 2,330
Portland MAX, Streetcar (LRT) 113,900 2,330
San Diego Trolley (LRT) 124,100 2,320
Phoenix Valley Metro (LRT) 41,200 2,060

* Q3 numbers were not reported. Data from Edmonton Transit, collected during the same period, used instead.
** Q3 numbers were not reported. NJ Transit’s own FY2014 data is used in place (the same number is reported in APTA’s Q4 ridership report).


On top of everything, SkyTrain has made us one of the most successful metropolitan areas in transit ridership with an annual ridership per capita that is 3rd highest on this continent (beat only by New York City and Greater Toronto)

Region Population Annual Ridership
(thousands)
Annual Ridership
(per capita)
New York City 19,831,858 3,893,854 196
Greater Toronto 5,583,064 1,003,230 180
Metro Vancouver 2,313,328 363,163 157
Calgary 1,120,225 157,325 140
Montreal 3,824,221 433,710 113
Boston 4,640,802 399,594 86
Washington, DC 5,860,342 456,915 78
San Francisco Bay 6,349,948 476,219 75
Chicago 9,522,434 658,203 69
Philadelphia 6,018,800 336,981 56
Los Angeles 13,052,921 620,903 48
Seattle/Puget Sound Region 3,807,148 175,215 46

Data above from South Fraser Blog

Now that I’ve finished with my thoughts, I’d like to see anyone try to claim that decisions resulting in SkyTrain projects over LRT are solely a result of senior-government overrides.

…or that anyone’s manipulating data to favour SkyTrain in rapid transit studies. Because that’s simply not true.


Featured: Evergreen Line construction image posted by nname on SkyscraperPage

Capital costs of Canadian rail transit systems

Above: The Canada Line at Marine Dr. Station. Featured photo by Larry Chen.

There’s been a lack of clarity when it comes to the big numbers that define the planning of transit systems in Canada. It’s particularly evident when transit technology becomes a matter of discussion.

Of course, millions of dollars are at stake. So there’s no doubt that when the cost estimate for a major project is higher by so much as a few million dollars, it’s the kind of thing that sends transit advocates scrambling to get attention and some people in the media practically screaming.

So I decided to take all the recent and upcoming Light Rail projects in Canada, research their costs and alignment details, and put them in a table for proper comparison. I put the data in a Google spreadsheet:

Data shown in alphabetical order, with Vancouver (NoF) on top.

All projects were included regardless of technology. Alignment was divided by percentage and split into/measured in 7 categories: on-street, above-grade (i.e. elevated), below-grade (i.e. tunnel, open cut), disused R.O.W. (i.e. railway R.O.W., other empty lands), bored tunnel (the most expensive kind of tunnelling), shared-lane (on-street in mixed traffic like a streetcar), and the total at-grade percentage.

Trends

Since the transit planning complaints here in Vancouver always seem to be directed at grade-separation, I decided to focus on seeing if there was a cost trend regarding the amount of grade separation for the line.

Same data as above, but sorted by amount of grade-separation.

What I found is that there is a trend that occurs when the chart data is pinpointed on a graph and assessed by percentage, but it’s very inconsistent and the projects are all over the map:

Several projects end up below the average and several end up above it. As an example, there’s a difference in the four projects on this chart closest to the 100% mark. The highest mark is for the proposed Scarborough extension of Toronto’s Bloor-Danforth subway line, which will be fully underground. The lowest mark is from the estimate for a SkyTrain Expo Line extension in Surrey, which will be fully grade-separated but built in an elevated guideway as opposed to a tunnel.

Despite the use of grade-separation, many of the highest-cost projects are not fully grade-separated and feature many at-grade segments that can limit potential. Even projects with only about 20% grade-separation can come close to or even breach $200 million per km.

Below-grade segments

In order to account for the differences associated with much more expensive below-grade (tunnelled) segments, I took the data and assessed it by percentage below-grade and found a much steeper and more consistent trend-line:

The amount of systems at the 100% mark has decreased from 4 to 3, and the trend-line now hits the middle of these three dots. The middle dot, closest to the line, is the current ongoing extension of Toronto’s Yonge-University Spadina subway line. The lowest dot is the cost estimate for the ‘Broadway Subway’ (the Millennium Line’s proposed extension down Broadway), which is below the trend-line but is built around a medium-capacity system unlike Toronto’s fully-fledged, high-capacity subway.

Still, there are some differences to account for in terms of alignment. At the 45-50% mark there are two projects that deviate both from the trend-line and from each other.

2012210-eglinton-lrt
The vast majority of the Eglinton Crosstown LRT will be placed in a large and expensive underground tunnel

The higher of these two marks, at $279 million per km, is the Eglinton Crosstown LRT being built in Toronto. The Crosstown was planned as an on-street LRT system, but the central portion will be placed in a 10km dual underground bored tunnel, which spans more than half of the final construction.  The lower of these two marks is actually our SkyTrain system’s Canada Line. The Canada Line is a fully grade-separated light metro and a slightly higher total percentage of it is below grade. However, only a much smaller portion of this is expensive bored tunnel – the rest was done as less expensive cut-and-cover. Therefore, it manages to be less expensive despite the full grade-separation.

Bored tunnels

To account for that difference I created one more plot excluding everything but projects with bored tunnel segments. The plot line managed to stay the almost same, and the relationship between high capital costs and tunnels is thus made clear:

Since only 13% of the Canada Line was built in a bored tunnel, it is now to the left of where it was in the last chart and sitting very close to the trend-line (the Eglinton Crosstown is also closer to the trend-line). Meanwhile, our Evergreen Line SkyTrain extension, which encountered challenging soils with its single tunnel bore, is right on the trend-line when set amongst the other systems.

Canada can’t be compared to Europe

The Tyee has probably been one of the most prominent to sound the cost-comparison alarm when they published a 2012 article titled, “Why Is TransLink’s Price for Light Rail Triple What Other Cities Pay?”

This article surmised that our Light Rail cost estimates are triple what they should be, based on cost estimates being about one-third as much in European and American cities. (And it was, of course, brought up as a way of hurling tomatoes at the idea of a Broadway Subway line – which is still a great idea for a number of reasons).

14532657623_ab73087347
Nice try, Tyee – but the Hiawatha Blue Line is largely off-street and incomparable to Broadway!

Interestingly, of all the American cities that could’ve been chosen in the comparison, it was Minneapolis and its Hiawatha Blue Line. This comparison is invalid as over 80% of the line is placed in either disused R.O.W. or tunnel, with only 20% of it being on-street. All of the other examples are from cities in Europe.

Regardless of whether you believe these numbers or not, the reality is that transit projects and their costs are more complicated than being able to be broken down into a simple cost-per-km value that can apply nationwide, across nations, or across transit projects. There are differences in labour laws, work schedule expectations, material costs, acquisition costs, logistics costs, varying land values, differences in local terrain and differences in economy. All of these need to be accounted for and thus it can’t be assumed that a transit project that cost a certain amount in Europe (or any other country, really) could be replicated in Canada for a similar cost.

Here in Vancouver, for example, any big rapid transit projects are likely to cost more than anywhere else in Canada simply because the higher cost of land would likely significantly raise the costs of project elements such as the operations & maintenance centre (OMC).

Despite this, at the end of the day, both the Broadway Subway and the LRT proposals were consistent with the trendlines across Canadian rapid transit systems.

On-street LRTs

To further address the point raised by The Tyee, I compiled one more chart between the predominantly on-street LRT systems:

From the wide spectrum in cost of what would otherwise be similar at-grade, on-street LRTs, it may appear that The Tyee would have a point. Even this can be explained, however. The two lowest-cost systems on this chart are Kitchener-Waterloo’s ION rapid transit and the proposed Victoria LRT system. They also happen to have the highest percentages (44% and 31% respectively) on a disused right-of-way (i.e. beside a railway), which is the least expensive place to build any transit because there’s no utility removal, property acquisition or street-scaping work adding to the cost.

highway_401_at_hurontario_street_9192877703
With a right-of-way this wide, the Hurontario LRT is not going to need a lot of property acquisition.

In the middle are the Mississauga and Hamilton systems, which are slightly lower than the big-city systems in Greater Vancouver and Greater Toronto (they are also among the 3 systems with occasional mixed-traffic rights-of-way), which seems just right to me. The Mississauga system (Hurontario LRT), in particular, is being built on a wide roadway that in most places still has significant allocations on either side where the roadway can be expanded if necessary (in other words, there’s almost no property acquisition).

The cost for a Broadway LRT system is certainly on the high-end of the spectrum. This makes sense as a Broadway system would need to offer the highest capacity of all of these systems and would face street-scaping challenges with the need to stay within property lines (though this won’t stop property acquisitions from being necessary at station locations). There’s also the uncertainty around an OMC, which would have likely had to be built underground and/or expensively due to the lack of lands along Broadway and high land costs in Vancouver.

Conclusion

In the end, the amount of bored tunnel has a somewhat linear relation with project costs – but grade-separation altogether does not. This doesn’t mean we should avoid building systems with bored tunnel segments from end-to-end (at the end of the day, whether to go that far or not should come down to detailed evaluations of each corridor and transportation needs), but what I do hope to achieve with this article is to facilitate an improvement in the discussion of rapid transit projects (Especially capital costs, since it seems to be the only thing people want to talk about when thinking of rapid transit projects – I, of course, completely disagree).

It’s time to stop thinking that we can build paradise if we replicate the results of other countries, at the costs those other countries experience – it’s impossible. Let’s build transit systems that are adapted to the way our cities work, so that we are sure to be rewarded with positive outcomes.

SkyTrain technology is not outdated and not proprietary

RE: Critics say SkyTrain technology is outdated – Global News

Pictured above: The new Tozai Line in Sendai, Japan uses SkyTrain technology – and is opening in just 7 days.

Nathan Pachal was incorrect in stating that Bombardier “dictates what we’re going to do in our region” in a recent interview with Global BC, and I couldn’t have been more disappointed at what he said. I couldn’t have been more disappointed with the report either, which claimed and brought attention to SkyTrain technology being “outdated” and a “boutique system is made by only one company.

This is misleading and untrue, and I have proven this many times in my research and advocacy efforts throughout the past few years.

SkyTrain technology is proven, efficient, and used around the world in more than just a handful of cities. The idea that SkyTrain is a single-company offering, and that it’s outdated, comes down to a lot of miscommunication, misinformation and the sheer lack of information in discussion circles here. It’s important to get some perspective, so firstly…

What is “SkyTrain technology”?

Used in our Expo and Millennium Lines, SkyTrain technology basically comes down to two unique aspects:

  1. Automatic train control (ATC)
  2. Linear induction motor (LIM) propulsion

See: NEARLY ONE IN FOUR METRO CITIES HAS AT LEAST ONE AUTOMATED LINE

Longest metro systems
The world’s longest automated metro systems are in major global cities including Dubai, Singapore, Paris and Tokyo, among others.

The former (automatic train control) has become the global standard in rapid transit, with more than 1 in 4 cities now having at least one automated metro line as part of their system, according to the Automated Metros Observatory. There are 732km of automated metro lines, and the observatory expects this to triple in the next 10 years.

I can imagine that the latter (LIM propulsion) has become the popular subject of contention – since only 5 systems have been built if you only count the systems installed by Bombardier.

However, if you count all of the other systems offered by other companies, LIM technology is now used in over 20 systems in cities around the world, including many busy, large-scale systems in China and in Japan.

Bombardier isn’t the only manufacturer of LIM cars

See also: List of Linear Induction Motor rapid transit systems

Osaka's Nagahori-Tsurumi-Ryokuchi line was the first of numerous linear motor train lines.
I took this photo when I was visiting Osaka in March of this year. Look, a reaction rail!!!

The biggest thing we misunderstand is that we think Bombardier is the “owner” of LIM technology and is the only manufacturer and provider of LIM cars. This is false.

In the city of Guangzhou, China, the world’s largest linear motor train system has over 100km of track. Already, three train lines in the city are using the technology and are responsible for carrying hundreds of thousands of passengers each day.

These are some of the newest subway lines that have been built in the city. One of them, line 6, opened just 2 years ago and is now the busiest line in the whole city.

The 3 Guangzhou metro lines use cars that were jointly manufactured by ITOCHU and CSR-Sifang. Meanwhile, in some of Japan’s biggest cities, Kawasaki Heavy Industries has manufactured LIM transit cars for systems serving hundreds of thousands of passengers a day in Kobe, Osaka and Tokyo.

sub_i_20150330_h_1
Brand new linear motor trains on Tokyo’s Oedo Subway line were made by a different manufacturer than the one that made the first-generation cars.

Kawasaki isn’t the only Japanese manufacturer of LIM cars. The upcoming system in Sendai is being supplied by Kinki Sharyo, and the Fukuoka system was supplied by Hitachi.

The Oedo subway line in Tokyo, one of the busiest lines in the city, is using several different manufacturers’ offerings: the first generation cars were manufactured by Nippon Sharyo and Hitachi, while new-generation cars delivered just this year were made by Kawasaki Heavy Industries. Tokyo’s example is proving that more than one manufacturer can be the supplier of linear motor trains.

These companies aren’t unaware of each others’ presence and do work with (and compete with) each other. They have even collaborated on certain occasions (as an example, Bombardier supplied bogies for some of Guangzhou’s metro cars – while Mitsubishi supplied the actual linear motors).

These cities chose SkyTrain technology for various reasons, one of the most popular reasons being the reduction in tunnel sizes and – as a result – the reduction in capital costs for building the system. In Japan, SkyTrain technology systems are directly promoted as a way of saving money.

See also: Linear Metro promotion page by Japan Subway Association

New systems are being announced and built very often, speaking to the success of this technology. The systems are responsible for moving many more people than even SkyTrain does – and do so reliably, every single day.

The newest system is opening in just 7 days in Sendai, Japan. I am looking forward to the launch celebrations.

Above: A promotional video for Sendai’s upcoming Tozai Line, showing the use of SkyTrain technology. The Tozai Line opens on December 6.

This technology is still very much being developed

Last month we were greeted by the arrival of the first “Mark III” SkyTrain vehicles. Bombardier’s Innovia Metro 300 product is the newest generation of Bombardier’s offering of SkyTrain technology. It has won orders here in Vancouver, for an expansion in Kuala Lumpur, Malaysia and – of all places – for a new rapid transit line in Riyadh, Saudi Arabia.

The renaming of what was previously called “ART” (Advanced Rapid Transit) into a “Metro” class product shows that Bombardier is as committed to keeping up with the development of linear motor propulsion technology, as its competitors are in China and Japan.

But what about all the breakdowns?

I’ve been feeling that SkyTrain technology critics would be motivated to speak as such due to the intensity of the recent SkyTrain breakdowns. For this, it’s important to get some perspective – particularly on what’s been causing some of these incidents to occur.

skytrain-control-cc-by-nc-sa
Track displays at SkyTrain control in Burnaby

Many of the recent break-downs on SkyTrain have been made worse by a particular shortfall that was identified in the commissioned SkyTrain performance review.

In the 1990s, BC Transit decided not to add a simple component to the automatic train control system which would have allowed the system to recover more quickly when a train is stalled. Other driverless transit systems have installed this component and thus do not face this particular problem.

From the independent SkyTrain performance review:

The SELTRAC technology of the 1980s has been upgraded with new control and software elements. SkyTrain was upgraded to the 2nd generation of the SELTRAC technology in 1994. However, SkyTrain did not include the auto-restart module that was available. Therefore, in a temporary loss of communication from the VCCs or VOBCs, SkyTrain SELTRAC technology still requires each train to be manually introduced into the control computer system.

Averaging 5-10 minutes per train to enter the necessary data, this equates to approximately 5 hours to fully recover operations, as there are approximately 40-58 trains operating depending upon when a service delay related to a train control communication failure occurs.

TransLink has identified the addition of this system as an immediate priority, but it may not be happening for another 5 years as the installation is a complex undertaking.

If BC Transit installed it 21 years ago, it would have been in place before the Millennium Line was built and we would be saving a lot of time with recent issues.

See: Fast SkyTrain restart 5 years away – Surrey Leader

Other breakdowns simply amounted to – in the case of last week’s incident – misplacement; – in the case of one of the 2014 breakdowns – human error; or – in the case of both the recent birds nest fire and tree hitting train incident – sheer bad luck.

Perhaps some of these breakdowns have resulted from the particulars of how our system was designed. Regardless, any transit system is prone to a breakdown of some sort. There are many different reasons.

breaker
At the same time as the SkyTrain incidents last week, a light rail train struck a pedestrian in Seattle and caused a 3-hour closure of the line in that area. Courtesy KIRO 7

My last blog post (We can learn from Japan on transit delays/incidents) was about a similar transit mishap in Japan last week on the JR Kobe Line, due to a fallen power pole. This is a conventional electric train line with rotary motors.

And, it seems no one knew about this but on the same day (and at the same time) as the SkyTrain breakdown of this week, Seattle’s LINK Light Rail line faced a 3 hour closure and disruption, when a pedestrian was struck by a train on an at-grade section.

What about the Scarborough RT?

You definitely can’t excuse the fact that Toronto wants to shut down the Scarborough RT, one of the first SkyTrain lines built and in-service, and replace it with either an extension of the Eglinton Crosstown LRT on the same route – or an extension of the Bloor-Danforth Subway line.

However, I reckon that the conversion and replacement has more to do with the desire to provide a through service with these other lines and reduce transfers. From a transportation planning perspective, that’s a very natural thing to want to have. It’s part of why the City of Vancouver has preferred that the “Broadway Subway” be built as an extension of the existing Millennium Line and not in any other way.

However, it’s also importance to have some perspective. The Scarborough RT was the first SkyTrain-technology line ever built, and was converted from what was supposed to be a standard extension of the Toronto streetcar system. The system was built to run only shorter Mark I cars, with newer Mark II cars deemed incompatible without a refurbishment.

Scarborough RT
The Scarborough RT was built well before a “Mark II” train car was even considered as part of the design.

This refurbishment was in fact studied, and was valued at $360 million. Going with a refurbishment was considered one of the most cost-effective ways to improve transit to Scarborough. The existing line and stations would be rebuilt to accommodate newer Mark IIs and Mark IIIs, and so provide a better service.

It would have cost less than rebuilding the line as an LRT system to integrate with the Crosstown line, and far less than building a new subway. It would have also avoided 28 additional months of transit service disruption for riders in Scarborough.

542-transit-chart
See: Our neglect of Scarborough RT is shameful: James – The Star

For whatever reason, be it political or otherwise, this suggestion fell on deaf ears – and that has been the subject of plenty of criticism. Transit planners in Toronto have condemned the neglect of the Scarborough RT’s infrastructure, calling it “shameful” and “inefficient”. It is pointed out that a January 2013 report by the TTC, commenting on the technology matter for a Scarborough rapid transit project, explicitly stated that:

“Notwithstanding criticisms and misinformation over the years, the Scarborough RT has been the single most-reliable service operated by the TTC. The service has been very successful at attracting ridership and has been operating over-capacity for a decade.” (2013 TTC report – page 9)

In addition, the Scarborough RT is run with drivers who operate the doors – breaking the fully-driverless design standard to which it was built to. As Toronto has not seen the full benefits of running ALRT the way it was designed, it’s hard to consider today’s judgement of replacing/shutting down the RT fair or unbiased.

2 years ago, Michael Schabas, a UK-based railway consultant of the Neptis Foundation, published an excellent report hypothesizing that the acceptance of SkyTrain technology in Greater Toronto could have saved billions of dollars and prevented a lot of the choking debate that’s put transit expansion there at a standstill today.

See: Toronto rapid transit review recommends SkyTrain expansion over LRT

Reports and viewpoints like these provide great insight and in my view are worth serious consideration. We all lose when someone is dismissive to consider really great alternatives, and ignores facts when there are facts at hand.


Help me put an end to the misinformation

Share this article on Twitter, Facebook and with anyone you know who’s concerned on transit matters. I believe that regional transit planning has been damaged significantly by misinformation like this, and it’s time to put it to an end for good.

I urge everyone reading this to help me spread the word and help me pressure Global into allowing me to respond to their article.

 

We can learn from Japan on transit delays/incidents

Video shows that in Japan, even the train evacuations are orderly 【RocketNews24】

As reliable as Japan’s public transportation system is, with so many trains running from morning to night, eventually some sort of problem is going to occur. Passengers heading to work or school in central Kobe had their commute interrupted at approximately 8 a.m. on November 16, when it was discovered that an overhead line had snapped on the Japan Railways (JR) Kobe Line between Kobe and Motomachi Stations.

Seeing that the repairs would take some time to complete, some 5,000 passengers were instructed to leave the carriages, which were stopped in an empty stretch of the tracks, and walk to the nearest station, as directed by JR staff who were on the scene.

Even in Japan, which is known for having one of the world’s supposedly most “punctual” train systems, delays and incidents can occur. Last week in Kobe, this was the scene on the city’s main JR rapid transit line after an incident with an overhead power-line was found, requiring a full shut-down of the system in Kobe and service disruptions throughout the 194km-long intercity rapid transit line.

If this sounds familiar, that’s because it does resemble some of the incidents that have plagued our SkyTrain system here in Metro Vancouver over the past few years.

I’m also sure many of you are aware of what happened to the SkyTrain yesterday (November 24th), when it was shut down in downtown due to a “power failure” incident that turned out to be a ‘one-in-a-million’ misplaced replacement rail part that moved on the tracks and struck/damaged the power shoe of an oncoming train.

Map of JR train lines in the Osaka/Kansai area. The blue line going west-east from Himeji to Maibara through Kobe, Osaka and Kyoto was the line affected.
[OPEN to enlarge] Map of JR train lines in the Osaka/Kansai area. The blue line from Himeji in the west to Maibara in the east was the line affected.
I was in Japan last week and happened to actually experience the Kobe incident in the video at the top of this post, although I wasn’t in Kobe when it occurred. Instead, I felt the ripple effects over 140km away at Maibara Station, on the eastern end of the line, as I transferred from another train from Nagoya intending to ride this particular line en route to Kyoto.

The featured photo at the very top of this post is my own picture of the “trains delayed” notice display I ran into when I arrived at Maibara Station. I could feel my stomach churn even more when I checked the departure time-boards on the station platform itself, which showed that westbound express trains had been completely cancelled.

This left me and perhaps several hundred other passengers waiting on the platform before having to crowd onto a smaller local train, which we would ride until another station down the line (Yasu) where express trains would re-commence. The incident was uncomfortable, cost me nearly 90 minutes in delay and had a major effect on my plans for the day.

This is, incidentally, longer than the approx. 60 minute delay I experienced yesterday when I was caught in yesterday’s SkyTrain delay. I started commuting from Surrey to the Main St. Station area to fulfill an errand, right after delays began at around 2:50PM. I went through stopped trains, crowdedness of the trains and crowded-ness again when I boarded a replacement shuttle bus at Commercial-Broadway Station.

SkyTrain has been through numerous shutdowns in the past year, which many have attributed to be an issue of system reliability. In actuality, many of them the result of the lack of an auto-restart system that was neglected by BC Transit in the 1990s; some of them were genuinely due to human error; and some of them just couldn’t be prevented no matter what anyone did.

Regardless of the cause, we don’t seem to handle these very well. Doors have been broken open, resulting in people walking on the tracks unauthorized and causing further delays as track power needs to be shut down. People tend to respond loudly and angrily on social media, not waiting for the investigation to blame TransLink on whatever happens.

There’s a lot that we can learn from the Japanese when incidents like these happen. In Japan, trains are so critical to the functions of life, responsible for moving millions of people every day in a very dense country. Punctuality is considered very important, and so train operators concentrate on providing the best service possible when everything is working. It’s important to understand that things can sometimes not work – and when that happens, instructions have to be followed and anger has to be calmed. Which is why the train evacuations showcased in the video were so smooth and orderly.

This train line didn't have emergency walkways at door-level like our SkyTrain system - so passengers had to climb down ladders to get onto the track.
This train line didn’t have emergency walkways at door-level like our SkyTrain system – so passengers had to climb down ladders to get onto the track.

The most important thing to remember is that at the end of the day, these incidents don’t actually happen that often – SkyTrain has maintained a statistical reliability that tops transit systems in other cities. I pride myself over having kept myself calm throughout yesterday, and hope that other passengers who were able to do the same do so as well.

See also: Vancouverites are Spoiled with SkyTrain – Vancity Buzz

We can’t let these incidents affect the way we think about transit and play our part in shaping major transit decisions, like the recent NO vote on the regional transit referendum. It’s easy to lose sight of the facts when you’re inconvenienced and made bitter, but at the end of the day, in doing you really aren’t helping anyone.

I’m noticing many commuters on Twitter talking about how reluctant they were to take SkyTrain today. If I had let the incident from last week stop me from using the JR train line again out of fear, I wouldn’t have been able to resume with my plans to visit Himeji Castle and take these gorgeous pictures….

Lastly, here’s a bit from the Rocketnews article that perhaps TransLink could take from for next time…

…we think what really sealed the deal is the Japan Railways representative who shows up on the platform at the video’s 0:27 mark, ready to apologize to those who were inconvenienced and hook them up with bottles of tea, which he opens for each person who walks by. Because hey, on the occasions when you can’t be punctual, you may as well be classy.

Man tea 1

Rapid bus, SkyTrain best option for Langley

So I thought I’d put up a newsletter that the Langley Times published today, along with some added sources/notes.

For anyone that’s curious, I intend to be doing some more blogging on the BCER Interurban very shortly.

LETTERS TO THE EDITOR – Langley Times

Rapid bus, SkyTrain connection still Langley’s best option

Editor: Re: LRT announcement ignores less costly interurban option (The Times, Oct. 2)

We should welcome good transit ideas here in Langley, but there’s a reason that TramTrain isn’t one of them.

TramTrain was possible in Karlsruhe because it’s surrounded by numerous electrified regional railways. We don’t actually have that here in Vancouver; and while the BCER Interurban may seem like a tempting choice, it ran three times a day [1] and wasn’t built to service today’s cities [2].

When the province and TransLink conducted the Surrey Rapid Transit Study, the Interurban was denied because it would cost millions to retrofit yet still fall short on providing useful connections and service frequency [3]. In other words, it would be a giant waste of money.

What we do have are numerous fast highways on which we could operate inexpensive rapid buses. One of those, the Trans-Canada, now has the Fraser Valley Express (FVX) service from Carvolth Exchange to Chilliwack. This service is now providing the alternative that valley commuters asked for — but when it came time to consult locals about the FVX, Rail for the Valley did not participate [4].

That’s because Rail for the Valley’s TramTrain and LRT advocacy doesn’t come from a genuine desire to make transit better — but rather an opposition to extending SkyTrain to Langley, even though it will do the most for transit commuters.

Our SkyTrain system boasts a ridership that is higher than any LRT system in Canada and the US. That’s why over 50 cities worldwide have followed our lead by successfully employing ALRT-style driverless metros [5][6].

As an extension of an existing system, SkyTrain would have the lowest addition in annual operating costs [7]. Without transfers, commuters starting at Langley Centre Station could reach Waterfront Station within 60 minutes [8]. That’s the kind of travel time improvement that’ll get people really wanting to use public transit, and generate the fare revenue to recoup costs.

I’m all for good transit ideas; but when it comes to what will objectively serve Surrey and Langley best, rapid buses and SkyTrain are the way to go.

Daryl Dela Cruz,
Campaign manager
skytrainforsurrey.org

Footnotes

  1. BCER article in Canadian Rail No. 534 issued Jan-Feb 2010 with the writer and 4-time BCER book author, Henry Ewert, stating himself that Fraser Valley interurban trains ran 3 times per day (Mirrored on Exporail.org)
  2. An earlier technical assessment found numerous technical/construct-ability issues with interurban rail. Mirrored [HERE]
  3. Surrey Rapid Transit Study: “Compared to other alternatives, lower population and employment densities along much of the corridor and a less direct connection to Surrey City Centre would result in lower transportation benefits.” See last page of Phase II Information Boards
  4. The BC Transit Public Engagement Reports for the Fraser Valley Express, Abbotsford-Mission (CFVT) Transit Future Plan and the Abbotsford-Mission (CFVT) Efficiency Review indicate that there has been no participation by members of Rail for the Valley and other associated initiatives, with no comments on potential Interurban Rail service.
  5. The Automated Metro Observatory regularly reports on the worldwide progress of driverless transit systems. There is an expectation that the amount of fully driver-less metro systems will triple by the year 2025.
  6. In addition, numerous cities worldwide have implemented the same linear induction motor propulsion technology used by SkyTrain. A full list is on this blog: List of Linear Induction Motor rapid transit systems
  7. Funding Still Missing for LRT Operating Costs news release – SkyTrain for Surrey
  8. Based on Surrey Rapid Transit Study travel time estimates.

New TransLink CEO salary is lowest in Canada

The next CEO of TransLink will earn an annual salary of almost $320,000, plus a generous benefits and bonus package.

(CBC: TransLink CEO job posting lists massive salary)

The new salary offer for TransLink’s next CEO is out and as expected, members of the public are complaining non-stop about a number that is being described by media as “massive” and “fat” as it is north of $300,000.

Earlier this year I wrote a blog post suggesting TransLink’s executive pay should be looked at in a different way, a post that was so well-received that it engaged the entire region and sent the page-view counts on this blog skyrocketing. When transportation professionals with the Victoria Transport Policy Institute quoted this blog post in a major study of theirs, I knew I had hit something right on the nail.

Now that the new CEO salary figures are out and everyone is once again relentlessly complaining, I decided to run the numbers again to see where TransLink is now against Canada’s major cities. The base salary is now in line with that of Toronto’s TTC and Montreal’s STM, but not when a bonus of up to 30% is considered:

“Greater Ottawa” in this chart counts both OC Transpo and Gatineau-Hull’s STO

But, when you consider all of the transit agencies servicing a metro area, the executive payment in this region is comparatively minuscule:

The “all” in the above chart represents all transit authorities servicing a given area. As an example, in addition to Toronto being serviced by the TTC, Mississauga is managed by Mi-Way; York Region is managed by York Regional Transit; GO Transit operates regional commuter rail and a TransLink-like regional authority called “MetroLinx” is required to tie them all together. Each of these operators has their own executives and CEOs.

Our region has 1 transit operator with 1 CEO; others have many different operators and multiple CEOs. It’s a concept that’s so simple and easy to understand, and it is absolutely crucial that we familiarize ourselves with it.

When TransLink’s context of a single, region-wide transportation authority is considered against what the region-wide setup is in Canada’s other metropolitan areas, Metro Vancouver actually has the lowest per-capita CEO salary of any major city in Canada. Even if our CEO receives a full 30% bonus.

We now pay about 17.5 cents per capita if the CEO earns a 30% bonus; whereas the people of greater Toronto pay between 1 and 12.5 more cents more for their executives (depending on what you would include as greater Toronto’s transit operators), and the people of greater Montreal each pay between 6 and 12.5 cents more.

We will also be paying our new CEO less for every revenue hour of transit service they manage, even if the CEO receives a full 30% bonus:

Top in-charge earnings per revenue hour of transit service 2015 NEW

I compiled the data for all to review here (LINK to this spreadsheet):

Outlook

Nickels for everybody! Yaaayy!
Nickels for everybody! Yaaayy!

The revised, lowered CEO salary will put a maximum of 5 cents back into people’s pockets and would not even pay for buying a single bus. Despite the relatively minimal benefits to Metro Vancouver’s citizens, attracting a new CEO will be a more difficult task with a lower offer, and TransLink should be commended considerably if and when they are able to do so.

The response a TransLink spokesperson offered in Jeff Nagel’s recent report for the Surrey Leader pretty much sums up why TransLink can’t be considered a “transit operator” in the usual vein:

“It needs to be a competitive salary,” Moore said, adding the challenge with comparing TransLink to other transit authorities is there is nothing similar in North America.

“The No side in the plebiscite wanted to compare the CEO of TransLink to one of nine CEOs in Seattle or one of eight CEOs in Toronto,” Moore said, referring to areas where multiple separate agencies do the work of TransLink. “Nobody else has an integrated rail-bus-road infrastructure.”

Pay offer for the next TransLink CEO under fire – Jeff Nagel, Surrey Leader

But, I don’t think most people are ready to understand this – it’s probably easier to think that our transit operator is a transit operator like any other, regardless of the serious differences in the way we are organized. It’s clear that much of the “NO” vote in the recent referendum was motivated by an unfavourable view of executive salaries, which were not being looked at in a proper context.

If anything, this should have an effect on how the provincial government interprets the “NO” vote altogether. At this point, the only way that the misinformation around executive salaries in this region can be offset is for someone to take leadership and recognize the serious flaws in how people have been informed on this matter.

SEE ALSO: Referendum Myths – TransLink and Executive Salary

Author’s note: This post was updated on July 27, 2015 to account for newly released numbers and other issues pointed out with the original post.

‘Everline’ SkyTrain transit system transforms Yongin City, Korea

^ New Yongin Everline promotional video (in Korean)

The 18km “Everline” rapid transit system in Yongin (near Seoul), South Korea, which utilizes the same “SkyTrain technology” trains used here in Vancouver, has celebrated its two year anniversary this past week – and along with that, city residents and officials have also been celebrating its positive effect in transforming the city of Yongin.

A new report published in English by the Korea Herald reports that the Everline is transforming Yongin City – helping to foster business growth and attract high-tech industries, encourage more people to adopt transit-oriented lifestyles and reduce congestion. The Everline is now meeting the ridership projection that was initially made in 2011.

Yongin, once regarded as a commuter town in Gyeonggi Province, is now developing into a business-centered metropolis equipped with a growth engine as it amasses infrastructure befitting a city of more than 1 million residents.

The development has been underway since Mayor Jung Chan-min took office nine months ago. The city is setting up several industrial complex centers including the Yongin Techno Valley currently under construction, and the once-dormant light rail ‘Everline’ is currently used by over 30,000 passengers daily.

[Yongin growing into business-centered city – The Korea Herald]

The Everline story: dismal beginnings

The Everline opened for service in 2013, after being unable to open in 2011 (the line had been fully constructed and in a ready-to-open state since before even then) and again in 2012, due to refusal from the City over issues with both construction and projected ridership (see INTERVIEW with Joongang Daily – Feb 2011). The delay was seen negatively by the Yongin Rapid Transit Company (YRTC), the line’s operator, which was awarded nearly $500 million in damages through the International Court of Arbitration, after suing Yongin City for delaying the opening of the line.

These issues, among others, gave the Everline a very dismal reputation among city residents – and a reportedly low ridership when the line was opened did not make things any better. One group of vocal residents, who were understandably not too happy about the delays and lawsuit, at one point called for the Everline to be dismantled altogether.

Yongin Everline Train
Although the Everline service operates at an exceptional frequency, trains operate with a single car and that has created even more dissatisfaction among critics. Photo from Wikimedia Commons, CC-BY-SA Minseong Kim

But, according to The Korea Herald’s report, it turned out that one of the key problems with the Everline during its initial year of operation was a total lack of fare integration with surrounding transit systems. There was also no direct station-to-station connection or fare integration between the Everline’s terminus station in Giheung, and the nearby Giheung Station of the Bundang Line subway connecting to Seoul City Centre.

Both of these issues were fixed by late September last year, causing ridership levels on the Everline to increase by triple by this April, a period of just over 6 months.

Everline, the major light rail line of Yongin, opened two years ago, but it had been long regarded as a public nuisance with fewer than 10,000 users per day. After implementing the Metropolitan Unity Fare system in September last year, the number of passengers drastically increased. After one month, over 20,000 passengers on average used the light rail daily, and the number reached an average of 30,000 passengers last month.

The ridership is now close to meeting the latest daily ridership forecast of 32000, by the Gyeonggi Research Institute in 2011; and at this rate will surpass it some time this year.

This is very significant for Yongin, because one of the things that pressured the City into refusing to open the line in 2011 was the lack of confidence that it would meet this projection – the city’s internal projections of 10,000 daily riders disagreed with the Gyeonggi Research Institute. The Mayor stated the City did not want to open the line, expressing concern about the increased operating subsidy and a loss of revenue due to lower ridership.

When the line finally opened in 2013, Korean transit blog Kojects noted that the city’s projection had turned out to be true (see No Passengers on Yongin Everline – June 2013) – with the line recording just under 10,000 passengers daily. However, the fare integration with surrounding transit had not yet been implemented, despite its anticipation during previous attempts to open in 2012. Now that it has been implemented, the ridership level is now triple the city’s initial projections and nearly matches the projections set by the Gyeonggi Research Institute; it will handily surpass those projections within this year.

The Everline costs about $26 million to operate yearly, which is a relatively low cost made possible by driver-less train operation. As a result, it is now close to half-way to reaching its total “break-even” point when daily ridership hits 75000 (This is according to a Korean newspaper – [see here]). At 75000, fare revenues will 100% cover all operating costs, completely eliminating the operating expense for city taxpayers.

By comparison, here in Vancouver our SkyTrain lines have hit their break-even points and are covering their operating costs through fare revenue. The newest Canada Line, opened 2009 and using Korean-built trains from Rotem in two-car sets, hit its break-even point of 100,000 daily riders in 2011 (against projections of hitting this in 2013). However, our SkyTrain lines have opened on-time and on-budget. The Canada Line opened several months early, and was bolstered further by the 2010 Winter Olympics in Vancouver.

Everline as an asset to Yongin City

Map of the Yongin Everline
Map of the Yongin Everline

On top of the recent fare integration, new efforts – including the promo video at the top of this post – have been made to promote the viability of the line to residents, many of them still bitter from having to wait years to ride and sitting through the handover of a major chunk of the city treasury.

It’s taken some time, but shuttle buses from the four main universities that are connected by the Everline, which previously were connecting to major transit centres, are now connecting to the Everline (According to previously linked report in Korean – [see link]), helping the universities reduce their transport costs. Activity on the line is increasing and there are now buskers performing at many of the line’s busier stations, fostering a lively urban atmosphere.

New developments on the line aim to take advantage of the Everline’s convenience. One multiple high-rise proposal, at the Everline’s junction with the Bundang Subway Line at Giheung Station, is expected to be a massive contribution to the line’s ridership (see report in Korean – [link])

The new Mayor of Yongin, who was elected to office 9 months ago, has supported the Everline and demonstrated its versatility by making the Everline a part of his own commute (the Everline has a station in front of Yongin City Hall), and has organized a citizens committee to make the best of the line now that it has been built. He has also used the Everline’s example to push for further rail investment in Yongin City – which may include further extensions of the Everline itself.

Everline trains consist of a single car, which is the same length as our Mark II cars but as wide as our Canada Line vehicles at 3.2m wide. The trains have been termed by some media and riders as “cute”, but derided by critics as being “more like buses”.

Nevertheless, trains run every 4 minutes during weekday peak periods, and no less frequently than every 6 minutes except during early mornings and late nights on weekdays and weekends. This is a higher quality service than many grade-level, driver-operated Light Rail systems. In addition, all stations are ready to accommodate 2-car trains.

Significance to Vancouver

Although the Everline operates an exceptional frequency, the fact that trains operate a single car has created additional dissatisfaction among critics.
You betcha that Everline train looked just a little too familiar. Look, linear motor rails!

The Everline has often caught the attention of transit observers in Metro Vancouver, noting the identical ‘SkyTrain technology’ from Bombardier being used on the new line.

Critics of SkyTrain expansion in our region were the first to jump on the Everline story, framing its issues as reasons that we should avoid expanding our SkyTrain system. I find it particularly ironic that it is the same kind of interference from municipal politicians – which resulted in the Everline’s shortfall as a Yongin City asset – that has been desired by critics referencing that shortfall as a way of stopping SkyTrain expansion.

But it should be clear that none of the problems with the Everline were the result of ‘SkyTrain technology’, or Bombardier. In his interview with Joongang Daily, the Mayor of the City in 2011 cited two reasons why the City was refusing to open the project: issues with ridership (which we now know to have been lack of integration), and issues with construction resulting in “noise and safety concerns”. These apparent construction issues were related to the elevated guideway structure and so a result of the construction contractor, not Bombardier or anything regarding ‘SkyTrain technology’.

Regardless of everything, the Everline has proved to be a successful transit system – and every day it carries more passengers and transforms life for more and more citizens in Yongin, it is turning around its dismal beginning of being a “failure” or a “white elephant” and becoming a true rapid transit icon in Korea.

I believe the Everline Story has two main lessons for all of us here in Metro Vancouver:

  1. “P3” transit projects must be carefully planned and considered. The Yongin Everline is essentially akin to a “what if the Canada Line P3 failed” scenario, with ridership not meeting projections – except the disaster was also kind of pre-empted as a result of fear of failure from the City’s politicians, the resulting delays in opening, and the lack of fare integration. The Canada Line did not fail because it was built on a well-demonstrated transit corridor (the previous 98 B-Line rapid bus was demand proof) and kept a promise to riders by mandating travel time improvements – the designer was actually required to orient its proposal around a set travel time value, and the Canada Line’s reliability in meeting that travel time was subsequently found to be the line’s #1 most-liked aspect in rider surveys. The City of Surrey should particularly be paying attention because it wants to use a P3 model on its proposed grade-level Light Rail system, which is more vulnerable to ridership not meeting projections than a grade-separated SkyTrain extension.
  2. The value of integrating transit fare systems. Major metro areas in North America like the San Francisco Bay Area are facing serious challenges dealing with multiple transit agencies, including major ridership losses due to the lack of integrated fares. We don’t have this problem in Metro Vancouver because of our system of having a single transit operator throughout history. As a result, TransLink is one of North America’s most efficient transit systems.