Our SkyTrain formula is a winning formula

Our SkyTrain formula is a winning formula
When the Evergreen Extension opens on Friday, the Metro Vancouver SkyTrain system will span 79.5 km and be:

I want you to process that for a moment. In just a few days on December 2nd, 2016, Metro Vancouver will have achieved a victory in the rapid transit game among cities in Canada.

That is, we’ll have the longest rail rapid transit system in Canada right here in the Lower Mainland, which also expanded at the fastest rate among Canadian Cities. All the while, at its utilization rates per km, SkyTrain is beating every Light Rail Transit system in Canada and the U.S. in ridership.

Yesterday night I posted an update (see: Yes, the Evergreen Line was cost-efficient) to my 2015 study of Canadian rapid transit projects that looked into the costs of our projects relative to their level of grade-separation. In it I detailed on how some rapid transit projects, despite exhibiting a higher amount of grade-separation, are below the trend line for capital costs relative to amount of grade-separation. That means we are delivering higher-quality transit for the same cost as one might have paid in another Canadian city for a grade-level LRT system.

What doesn’t seem to be well understood in this region is that we are doing well in delivering rapid transit projects with high cost-efficiency and cost-effectiveness, and that there are good reasons for this, related to design choices we make in our projects – including our choice to have full grade-separation.

mark-iii-header

Some of the reasons that extensions of Vancouver’s SkyTrain system have been delivered more cost-efficiently than other rail transit projects in Canada include the following:

Smaller tunnels: the Linear Induction Motor (LIM) technology used on our Expo & Millennium Lines enables lower vehicle heights, which in-turn enables us to use smaller tunnels. Smaller tunnels require smaller tunnel boring machines and are less costly to build. Lower vehicle heights also helped us commission the downtown Dunsmuir Tunnel on the Expo Line for its current transit use. The then-abandoned tunnel accommodated freight trains on a single deck; the tunnel was retrofitted into two decks to accommodate our low-height LIM Expo Line trains. Utilizing the Dunsmuir Tunnel likely saved hundreds of millions of dollars in downtown tunneling costs for rapid transit and ensured that rapid transit had stations to connect to the Burrard and Granville downtown corridors.

Lighter guideways: LIM technology also enables our rail vehicles to be lighter than comparable vehicles with standard rotary motor technology, resulting in lighter guideways that require less material and can be built to support lower weights.

Smaller stations: The driver-less, automated signalling system used by SkyTrain enables our system to provide a high capacity by combining a higher frequency with shorter trains, whereas traditionally signalled systems may require longer trains to maintain cost-efficiency, with each train manned by a driver. This enables our system to have smaller and less costly stations. (The downfall with this is that sometimes stations are configured to be so small that they appear to constrain capacity, although it is debatable whether or not this is actually true – see: Canada Line)

Smaller OMC requirements: Operations & maintenance (OMC) facilities can require lots of land, which is expensive in Metro Vancouver, for storage and maintenance of trains. Our SkyTrain extensions have generally had much smaller OMC requirements for three main reasons:

• The driver-less control system reduces the equipment and space required in the yard
• Driver-less signalling allows trains to be parked at track stubs & sidings when out of service; on a traditional system all trains would return to OMC so that drivers can embark/disembark
• Extending our current systems & technologies reduces/removes the need for additional OMC facilities to accommodate other systems & technologies.

Excellent outcomes: The combination of all of the above factors plus design choices like full grade-sepraration, driverless operation to reduce operating costs, high frequencies, integration with the overall transit network and strong anchors/destinations on the lines results in a ridership and fare revenue outcome that not only makes Vancouver a leader among North American cities, but helps keep the entire transit network stable and sustainable to allow the system to expand further and be even better.

Altogether, these reasons combine to form what I would like to term the SkyTrain formula.

It’s understandable to see that with Vancouver forging a different path than the rest of the country in terms of design choice (other metropolitan areas, except maybe for Montreal, only ever talk about subways and LRTs and nothing else), there’s bound to be lots of criticism, doubt and worry.

However, the numbers do say that at the end of the day, the SkyTrain formula is a winning formula: it has resulted in some of the fastest and most cost-efficient rapid transit expansion in Canada. I think that’s something we need to be proud of – but more than that, it’s also something worthy of attention for all Canadian cities that are looking to build more transit.

Yes, the Evergreen Line was cost-efficient

Yes, the Evergreen Line was cost-efficient

Approximately a year ago on this blog I compiled a study of Canadian rapid transit projects, ranking their costs by their amounts of grade-separation (as well as the amounts of their grade-separation sub-types, such as above or below-grade). My goal was to offer decision-makers and planners the first proper data-set from which it could be assessed whether the level of grade-separation in Canadian transit projects is worthwhile, and cost-efficient relative to other projects in the country.

Today I have to release an update for this data-set, because some budgetary news concerning the Millennium Line’s Evergreen Extension has been released. According to the new info, the Evergreen Extension is now set to open at a cost of between $70 and $85 million under budget, although the opening was delayed multiple times – first due to uncertainty of funding, and – more recently – due to engineering challenges for the 2km bored tunnel.

Jpeg
The Evergreen Extension is finally set to open on Friday, Dec 2nd.

Initially, I chose to focus on grade-separation because of how much it is a contentious topic here in Metro Vancouver (I, for one, am caught in the fray leading a campaign that is devoted to seeing rail rapid transit expansion in that part of the region be fully grade-separated).

Full grade-separation of transit brings reliability, faster speeds and lower risk of accidents like the pedestrian-train collision just yesterday in Calgary that closed down both directions of the C-Train LRT system for nearly 4 hours. Critics of grade-separation have countered that it grade-separation is not necessary for reliable service and makes transit projects too expensive. However, as it turns out, many of the rapid transit projects we’ve built in Canada without any grade-separation – or with very little of it – exhibited construction costs per km that were higher than fully grade-separated projects, such as our extensions of SkyTrain.

With the updated costs for today’s Evergreen Extension SkyTrain project, I wanted to see how its final costs would fare against other Canadian transit projects, and other major transit projects & proposals in our own metro area. I updated the scatter-plots I created for my study and came up with the following outcomes for the Evergreen Extension:

In terms of overall grade-separation, the Evergreen Extension is far below the trend-line for other projects in Canada, exhibiting a relatively low per-km cost of $122-$123 million despite over 75% of it being built above or below-grade (the remaining approximately 25% is built at-grade, but the line is still fully grade-separated with no crossings). Also, when above-grade separation is not considered and only below-grade separation is considered instead, the Evergreen Extension is at the trend-line for Canadian rapid transit projects, in terms of capital cost relative to percentage that is below-grade.

In short, even though a lot of people in the region don’t seem to believe it, the Evergreen Extension was delivered with a very high cost-efficiency.

I see this as a very important outcome, as the Evergreen Extension has been the subject of controversy not only for its numerous delays, but also for the context in which it was built. A 2008 decision by the provincial government switched the project from a then-planned street-level LRT to an extension of SkyTrain, based on a projection that there would be lower operating costs and higher ridership & convenience.

Concept: Douglas-Lafarge Lake SkyTrain Station on the Evergreen Line SkyTrain
Concept: Douglas-Lafarge Lake Station on the Millennium Line Evergreen Extension

Critics of the decision say that the LRT proposal expected construction to start in 2007 and finish by 2011; however, that was likely never possible, as some of my own digging (see post: The Real Evergreen Line Story) revealed that the design of the LRT project had still not been completed by that time in 2007 – and with much of the process shrouded in secrecy, we may never know of the potential issues planners faced trying to make an Evergreen Line LRT work.

Now, what I found particularly interesting is that my numbers aren’t only showing that the Evergreen Extension was cost-efficient, but other Metro Vancouver transit projects & proposals are below the trend-line average for rapid transit projects in the country in cost relative to grade-separation.

The Canada Line actually did even better than the Evergreen Extension, built nearly 50% below-grade for a bargain price of $116 million per km – prices found in projects with far less of their construction below-grade. The Broadway Extension, based on the last-available estimates from 2012 (adjusted for inflation, of course), is well below the national trend-line and has room to rise in cost-per-km while still remaining below the national trend-line relative to amount of grade-separation.

Today it’s not only the Evergreen Extension, but other much-needed transit projects in Metro Vancouver are facing scrutiny from observers over their capital costs, and the growing negativity is certainly not helping out these transit projects. It would seem that some of this is not deserved.


By the way, the Evergreen Extension is officially opening this Friday and I can’t wait! There will be celebrations and you can look forward to seeing me there as well as my SkyTrain for Surrey campaign team.

New SkyTrain changes hide drop in service (UPDATE: TransLink to reverse service drop)

New SkyTrain changes hide drop in service (UPDATE: TransLink to reverse service drop)
UPDATE Mon Oct. 3: It appears that TransLink has reversed the drop in service frequencies on the Expo Line as part of the upcoming changes. While retaining the lengthening of Mark I trains to 6 cars, Expo Line passengers will continue to have 6-minute service on each branch during off-peak periods, and peak period service will be increased versus the original proposal. The issues brought up in this blog post were cited by TransLink as having contributed to the decision to reverse the frequency changes.

The following reports have further confirmed the changes:


Original text below:

Yes, you read that headline correctly – this is not a joke, and not some mis-interpretation of the upcoming SkyTrain changes on October 22nd. TransLink is going to reduce Expo Line service frequencies, at all times of day, on October 22nd.

skytrain-oct-22
The SkyTrain as it will operate after October 22nd. The Expo Line is shown in blue.

The Expo Line, the original SkyTrain corridor extending to King George Station in Surrey, is the busiest line on our SkyTrain rapid transit system. After poking around on TransLink’s website along with forumers on discussion boards, I made a startling discovery about the upcoming October 22 SkyTrain changes. It appears that, for no apparent reason, TransLink is sneaking a reduction in service frequencies at all times of day on the Expo Line, and this is not being communicated with the public.

I initially confirmed this when I and some fellow online forumers on SkyscraperPage, CPTDB and others were looking into SkyTrain’s schedule changes. The operating schedules for SkyTrain, SeaBus and West Coast Express can be accessed through TransLink’s “bus schedules” page by typing in corresponding numbers in the 900s. The current Expo and Millennium Lines were using numbers 999 and 996, but we discovered that the numbers 992 and 991 were being utilized for a brand new schedule effective starting in October.

This schedule showed that SkyTrain frequencies were clearly being subject to a decrease at basically all times of day – not just the peak service hours. Mid-day and evening service (currently at every 6 minutes) and weekday day-time service (currently at every 7 minutes) would be operated less frequently at every 7.5 minutes. Some parts of the schedule have seen a minor service increase from 10 to 8 minutes, but this is happening at parts of the day where the issue of frequency is not as critical – such as late at night on weekdays and weekends.

skytrain-decrease
Wait times at Surrey SkyTrain stations will be 7-8 minutes after October 22nd, compared to the current 6 minutes, during mid-day periods.

TransLink representatives at a recent media event had commented that passengers would be waiting an “extra 10 seconds at peak times” (see: report by Jeff Nagel on Surrey Leader), although trains would be consolidated into longer consists (i.e. 6-car Mark I, 4-car Mark II or Mark III) make up for this and ensure a high capacity.

However, the actual schedule change I have uncovered shows that the actual increase in wait time is closer to 25 seconds on the Expo main-line inbound from Columbia Station (108 -> 133 seconds), and will be as high as 38 seconds on average on the King George branch in Surrey (162 -> 200 seconds). In addition, in a move that has by far been completely unannounced, passengers will be waiting up to an additional 1.5 minutes on each branch during mid-days and other off-peak periods.

TransLink has never confirmed this explicitly during Q&A sessions for the October 22 changes, but has recently quietly confirmed the change on its SkyTrain schedules page, which are now showing a “Current” and “Oct. 22” schedule that reflects the proposed change on the “bus schedules” page. For more info, see the page:

TransLink > SkyTrain Schedules > Expo Line

Frequencies will change as follows, according to TransLink’s website:

Expo Line – Waterfront to King George
Time of Day Frequency before Oct 22nd Frequency after Oct 22nd
Peak Hours (6-9AM, 3-6PM) 2-4 min. 2-5 min.
Mid-day (9AM-3PM) 6 min. 7-8 min.
Evening (6PM onwards) 6 min. 7-8 min.
Late night 8-10 min. 8 min.
Early Sat/Sun 8-10 min. 8 min.
Sat, Sun/Holidays 7-10 min. 7-8 min.

The changes in service frequencies will mean longer waits for trains at almost all times of day, making the Expo Line less reliable and less versatile to its many riders. It will also result in more overcrowded SkyTrain platforms – as longer waits between trains means each platform will need to service up to 25% more waiting passengers than there are today with higher frequencies. Some of our stations – particularly ones in the middle of reconstruction, such as Metrotown Station – could have trouble having to accommodate for additional waiting passengers.

Today's higher frequencies prevent platform overcrowding because the train arrives sooner to allow passengers to be on their way. The service changes will mean more overcrowded SkyTrain platforms.
Today’s higher frequencies help prevent platform overcrowding because the train arrives sooner to allow passengers to be on their way. The service changes will mean more overcrowded SkyTrain platforms on the Expo Line, as platforms will have to handle as much as 25% more waiting passengers.

While train lengths are increasing, I do see the possibility that overall service capacities will come down as a result of the changes. Going from 6 to 7.5 minute service in the mid-day and on weekends is a substantial 20% reduction in service frequency, and while Mark I trains would be operated in longer 6-car formation, the Mark II trains currently operating in 4-car formation would be essentially the same as they are today.

SkyTrain passengers already swallowed a change in 2013 that saw weekend frequencies on the Expo Line drop from 6 to 7 minutes on each branch, as part of a package of cost reductions implemented throughout the entire system to improve cost-efficiency. This has resulted in substantially increased weekend overcrowding, with Saturday PM volumes between Commercial-Broadway and Main Street-Science World stations now nearly at the line’s practical capacity in both directions (see: 2015 Transit Service Performance Review, Appendix E).

Why this makes absolutely no sense, whatsoever.

mark-ii-broadway
Prior to an expansion order in 2009, Mark II trains in 2-car formation were operated alongside Mark I trains on the Expo Line. SkyTrain had the flexibility to offer higher frequencies with the smaller trains, as opposed to lower frequencies with all of the Mark II trains in a 4-car formation.

One of the big advantages to the driver-less, automatic train control technology we use on our SkyTrain system has always been our ability to maintain high frequencies at any time of day, without high operating costs. On our system, shorter trains at higher frequencies can provide the same capacities as longer trains and lower frequencies typically found on other light and heavy rail systems, but without the higher costs associated with needing extra drivers and conductors.

This has made us a continental leader in providing rail rapid transit services among North American cities. I have previously noted that Metro Vancouver is unmatched in its off-peak rail transit service frequencies, when compared to metro areas of similar sizes – in which off-peak service on the rail network is generally provided every 10 to 15 minutes on individual lines.

SEE EXAMPLE
Portland, Denver, Pittsburgh and Cleveland are other metro areas similar in size to Metro Vancouver with rail transit systems, yet none of them are able to provide the kinds of service frequencies we have on our fully-automated SkyTrain system. Go [HERE] to see a comparison of our service frequencies against these cities’.

What can be done about this

TransLink is dealing with a public credibility problem and this is certainly not going to help their case. The entire service change on October 22nd is being made without a formal public consultation process, which wouldn’t really be so much of a problem if there weren’t going to be major changes in service frequencies on existing lines – but there are. And, there has been no indicated rationale as to why mid-day and weekend service frequencies are also being reduced.

I don’t see any barriers to continuing to provide a 6-minute service off-peak with the longer trains, or utilizing the existing schedule whereby peak service is operated at higher frequencies, with a mix of trains including shorter 4-car Mark I trains.

UPDATE Fri Sept. 23 @ 10:24AM: At the moment, the fabrics of how this decision went through are still unknown to me. However, I am now working on communicating with BCRTC and TransLink’s planning department to get some answers and gauge whether I could push to have this decision reversed.
UPDATE Mon Oct. 3: It appears that TransLink has reversed the drop in service frequencies on the Expo Line as part of the upcoming changes. While retaining the lengthening of Mark I trains to 6 cars, Expo Line passengers will continue to have 6-minute service on each branch during off-peak periods, and peak period service will be increased versus the original proposal. The issues brought up in this blog post were cited by TransLink as having contributed to the decision to reverse the frequency changes.

The following reports have further confirmed the changes:

Montreal’s 67km driverless train system to be third longest in world

Montreal’s 67km driverless train system to be third longest in world

Proposed driverless train network cites Vancouver as model in case study


The Caisse de dépôt et placement du Québec (CDPQ), an institutional investor responsible for financing major transportation projects in Quebec, has proposed the construction of a driverless rapid transit network, similar to our SkyTrain system, to service Greater Montreal.

The Réseau électrique métropolitain (REM; English: Metropolitan Electric Network) will span 4 proposed corridors and 67km. The system will serve several Greater Montreal cities and be the 3rd longest driver-less system in the world after the Dubai Metro and Vancouver’s SkyTrain.

The proposal will double the length of Montreal’s rail rapid transit network, and addresses the need for rapid transit to service areas in Greater Montreal where most commuters are driving to access the inner city, or are putting up with long bus and commuter train rides. The service will address the previously identified need to bring rail rapid transit across the Champlain Bridge, and bring new rapid transit to many areas of western Montreal that do not have any access to rapid transit currently.

Travel time savings and high service frequency were made key focuses in the CDPQ’s proposal, which outlined what kind of travel time savings would be achievable on each of the 4 proposed corridors:

Part of the project would involve the conversion of the existing Deux-Montagnes commuter rail line to integrate with the proposed rapid transit network. Similar to SkyTrain’s Expo Line, an existing rail tunnel will be repurposed in order to service the new rapid transit line (this tunnel currently carries the Deux-Montagnes line’s existing service). In addition to servicing 3 major suburban areas, the proposal includes a branch to the airport that fulfills an earlier proposal to build a Canada Line-like system connecting to the rest of Greater Montreal.

At a cost of $5.5 billion to build, the new line will represent a major investment in Greater Montreal rapid transit that will be the biggest since the Montreal Metro. However, Caisse, which was awarded the responsibility for financing major transportation projects in Quebec in an infrastructure deal last year, has offered to invest $3 billion – just over 50% of the project’s cost – into the REM project. Additional public investment would then be split between senior-level governments.

The massiveness of the CDPQ’s investment commitment shows that it is confident that the project will succeed. The CDPQ’s case study clearly identified the potential to bring serious benefits for transit riders, and its clearly identified rationale for choosing driverless train technology dignifies its success here in Metro Vancouver and around the world.

Download the case study

Significant improvements in transit service

Map of the new system, showing connection points with existing rail transit in Montreal

The new system is expected to have 150,000 riders on opening year (2021), 65,000 higher than currently exist on those corridors.

To fulfill the expectation that the system will raise this ridership, the CDPQ has designed the project with an intense focus on travel time benefits and rider comfort. Focus was placed on making sure trains were accessible all-day, every day, with the project advertising that service will run 7 days a week for 20 hours, and much more frequently than existing commuter rail service. CDPQ also focused on ensuring the system had quality amenities such as a free wi-fi network along the line for all commuters.

SkyTrain cited as inspiration

Montreal benefits
The REM case study cites SkyTrain as an example for development success.

In addition to the improvements in transit service, over $5 billion in economic development is expected to be attracted along the line, with Vancouver and the Canada Line cited as the primary example. The construction process is expected to contribute $3 billion to the GDP, and the reduction in road congestion is expected to reduce economic losses of $1.4 billion per year and 16,800 tonnes of greenhouse gas emissions every year.

Following the SkyTrain model

Caisse was one of the private investors in the private consortium chosen to build the highly successful Canada Line rapid transit project back in 2009. Caisse’s experience from co-investing in the Canada Line, and then co-experiencing its record ridership numbers well above target while billions in economic growth is spurred along the line, appears to be directly translating into the choices of station spacing, technology and level of investment on the REM.

These choices are remarkably similar to the ones that we have made with transit here in Vancouver – as an example, we also repurposed an existing tunnel for our driverless SkyTrain system – and would suggest that Greater Montreal is on its way to a transit future that is sustainable to maintain and feasible to expand. Here in Vancouver, we’ve managed to expand rail transit faster than every other city in Canada, while our system boasts an exceptional system ridership record that is envied throughout North America by other cities.

Just like our SkyTrain system, the system will make use of shorter trains (2-car trains off-peak, joined to form 4-car trains during peak hours) at a higher frequency, providing the same capacity as longer trains at a lower frequency.

2-car SkyTrain approaches Brentwood Station on the Millennium Line
SkyTrain pioneered driverless train technology. Seen here, a 2-car SkyTrain approaches Brentwood Station on the Millennium Line. By sillygwalio, CC-BY

With 24 stations over 67km, the station spacing means that the REM is a cross between suburban/commuter rail and urban rail.

The new proposal in Montreal looks a lot like the Canada Line of our SkyTrain system.

The spacing is wider, resulting in faster service, in outer areas where rapid transit is competing against commuting by car and localized access is not its main purpose. However, it condenses in inner areas where the line can then double its purpose and act an urban rapid transit link. This is similar to what is done by our SkyTrain system here.

To top things off, the system includes an airport branch which is similar to what was done with our very own Canada Line. This approach to integrating airport service with other nearby urban rapid transit service is different from what was done in Toronto with the construction of its dedicated Union-Pearson Express train, which was heavily criticized for its high fares.

Train technology

REM cars

The concept 2-car trains (which are joined to form 4-car trains during rush hour) look similar to the Bombardier ART and Innovia trains being used here in Metro Vancouver. The system will share the same 80m platform lengths used by our Expo and Millennium Lines.

The project mentions that they will be “electric light metro” cars that use overhead catenary power, presumably to capitalize on the existing commuter rail infrastructure on the Deux-Montagnes line and through the Mount Royal Tunnel. While it’s plausible that the trains will be using conventional propulsion technology, the train size and specs suggest that linear motor train technology as used in our Expo and Millennium Line could be adopted.

A 2-car Tokyo Metro 01-series train now in service in Kumamoto. These trains were outfitted with overhead catenaries for Kumamoto’s railway, after using third-rail power for years on Tokyo’s busiest city subway line. By hyolee2, CC-BY-SA

Bombardier currently offers its Innovia Metro trains (used on our SkyTrain system) with third rail propulsion options, but it would not be difficult to modify the design to take overhead power. Existing third rail trains can be easily modified and outfitted with pantographs.

In Japan, which is home to the world’s most well-built railway and transit networks, this is done regularly when used trains are passed on from big city to smaller-scale transit operators.

As an example, last year a number of Tokyo Metro Series 01 train cars, which were used on the city’s busiest Ginza Line, were transferred to a local railway in Kumamoto, which required the installation of an overhead catenary and other modifications (whereas the previous metro line was a third-rail subway).

See also: Montreal may use SkyTrain technology for Champlain Bridge “LRT”

I have previously commented on how Montreal rail rapid transit projects have specified trains that are similar to those used on our SkyTrain system. This proposal, which actually encompasses many of the same corridors, continues that trend, and it is becoming increasingly likely that a full ALRT adoption is going to be used.

The cost rationale for going driverless

Driverless winning
The total length of automated metro lines is expected to triple by 2025.

Greater Vancouver pioneered driverless rapid transit when SkyTrain was introduced more than 30 years ago, utilizing what was then the latest technology developed by Alcatel and UTDC. Since then, other systems have been built in numerous cities around the world. According to the International Association of Public Transport (UITP), 35 cities around the world operated 52 automated metro lines, spanning over 700km, in 2014. This is expected to increase three-fold to over 2000km by 2021.

Automation brings many operational advantages, in particular, increased safety and flexibility in operation, unrivalled reliability, and more attractive job profiles for the staff on the line. Building on these strengths, metro operating companies can seize on automation as a lever for change at all company levels: operational, maintenance and customer service.
 
(UITP automation report)

One of the more obvious ways that a driver-less system saves money is with the reduction in staffing (no drivers on each of the many trains), headroom is created to operate much more frequent service during less busy weekends and off-peak hours, without incurring an operating cost penalty.

However, the REM’s design choices also show how driver-less train systems can also create the flexibility to save on the project capital cost while maintaining the highest quality of service.

The western proportion of the REM proposal has 3 separate lines that merge into a single lane heading into Montreal City Centre.
The western proportion of the REM proposal has 3 separate lines, which merge into a single line heading into Montreal City Centre.

With service frequencies as high as every 2 minutes in the central portion of the line through Montreal City Centre (and potentially higher as ridership increases), driver-less technology is what fosters the potential to combine the no less than 3 forking lines to the west, each already operating at a high frequency, into a single line heading into the city core.

Traditional, driver-operated commuter railways do not always benefit from the ability to merge lines, as the lower permitted frequencies and longer train sizes make running at such high frequencies prohibitive and infeasible. As an example, in Osaka, Japan, the 3 ‘Hankyu’ commuter train line branches serving the areas north of the main city enter the city core on a wide 6-track right-of-way, including a 6-track bridge over the Umeda River. Each line gets its own set of tracks and is operated separately from one another.

Osaka, Japan's 'Hankyu' commuter train lines have 3 branches that converge for the final segment into the City Centre. Each line gets its own set its tracks, and crosses the Umeda River into the city core on a 6-track bridge. Montreal's REM proposal is using driverless technology to avoid this setup, with 3 forking lines merging into a single line and using driverless technology to travel into the city core at high frequencies.
The Hankyu bridge into Osaka’s Umeda Station. By GORIMON, CC-BY-NC

Montreal’s REM proposal is using driverless technology to avoid this setup, utilizing driverless technology to have trains from 3 different lines travel into the city core at very high frequencies – without the need for separate tracks, additional tunnels and viaducts, and larger infrastructure, meaning costs and land footprint are significantly reduced.

It is clear why CDPQ is choosing a driverless, automated light metro system – the higher frequencies allow for capacities that are comparable or better despite shorter platforms, and compared to an investment in heavy commuter rail, the REM’s choice for driverless train technology could be saving billions upon billions of dollars.

Opening to public in 2020

Concept image of an REM station

One of the marvellous things about the R.E.M. plan is the speed at which the CDPQ wishes to set it up. With a clear business case and clear benefits presenting the opportunity to quickly approve funding from the provincial and federal governments, construction is expected to start in Spring of 2017, approximately 1 year from now.

The line will then open in 2020, with construction sped up by the well-planned re-use of existing rights-of-way and tunnels, and its integration with other projects such as the new Champlain Bridge.

Despite what could be seen as challenges due to the cost, the REM proposal, and the speed at which it will be ready for service, is a showcase of what happens when all parties can come together with a great plan and a great business case. Moreover, driverless train technology, which was pioneered and made extremely successful here in Vancouver, is the basis of this proposal.

See also: The Problem with SkyTrain Critics – Denying the Benefits

I think I am most delighted by the indication that driverless train lines are still worth building and make a lot of sense for urbanized cities. Many of Vancouver’s SkyTrain expansion critics seem to think that isn’t the case.

My guess is that once the REM is complete and its success plays out, its success could very well trigger a rapid transit planning revolution and the mass spread of driverless train systems throughout world cities. Canada will not only be the country that pioneered this technology – but also the world leader in implementing it, with two of the world’s longest driverless systems in Montreal and in Vancouver.

The Real Evergreen Line Story

Summary: Most people are still asking the question of why the province decided to suddenly switch the Evergreen Line to SkyTrain technology in 2008. I think we should be asking questions about why the LRT design process suddenly stopped, with no reason, back in 2007.


It’s coming to our region, but it’s opening in 2017, which just happens to be yet another delay in a consecutive series. These Evergreen Line delays have injected a new wave of doubt among transit observers here in Metro Vancouver, who may remember a time not too long ago when the Evergreen Line was comparable to a hot potato – hardly anyone could come to an agreement about it.

During the late 2000s the Evergreen Line went through numerous hurdles that we worry about in transit issues today; ranging from funding shortages to planning issues to a lack of clarity in the political commitment to the line itself.

But, to some people, I can imagine the most perplexing thing about the Evergreen Line story was the controversial change from an at-grade Light Rail Transit system, to the currently-being built extension of the existing SkyTrain system. It took people by surprise, changed the focus of the discussion and was so significant that it caught the attention of transit bloggers in other Canadian cities.

The move was controversial because of the creation of a new business case released by the provincial government (hereafter referred to as the “2008 business case”) that overrode a previous business case released by TransLink (the “2006 business case”) for the Evergreen Line as an LRT. A following, final business case by the province(the “2010 business case”) adopted the results of the 2008 business case without making major changes to or addressing its supposed issues.

The new business case explained that its recommendation for SkyTrain (ALRT) on the current corridor was based on 4 key findings:

  1. Ridership – ALRT will produce two and a half times the ridership of Light Rail Transit (LRT) technology; this is consistent with the ridership goals in the Provincial Transit Plan.
  2. Travel Time – ALRT will move people almost twice as fast as LRT (in the NW corridor).
  3. Benefits and Cost – ALRT will achieve greater ridership and improved travel times at a capital cost of $1.4 billion, with overall benefit-cost ratio that favour ALRT over LRT.
  4. System Integration – ALRT will integrate into TransLink’s existing SkyTrain system more efficiently than LRT.

Light Rail advocates who looked into the study insisted that the new analysis, in its rejection of what was supposed to be a sound business case, was biased in favour of SkyTrain – some of which alleged that the switch was a result of insider connections, shady agreements, and other under-the-radar proceedings. 2008 was a time when it wasn’t as clear to people that SkyTrain isn’t a proprietary transit technology and it was probably no surprise that critics of the decision came in waves.

They were joined by others, including City Councils of the time, who expressed concern about some aspects of the newer business case. Two particular major players come into mind:

1. The City of Burnaby released a staff report that injected doubt into the Evergreen Line’s cost estimates, ridership estimates and evaluation. (See [HERE] for report)

“This report recommends that the Province and TransLink undertake to re-evaluate the choice of technology and prepare a business case of LRT technology for the Evergreen Line based on the concerns and questions raised in this report with regard to service speed, ridership estimates, operating and capital costs, inter-operability, community service and other factors.”

2. A Portland-based transportation engineer named Gerald Fox alleged that the analysis had been manipulated to favour SkyTrain. (The original letter was posted [HERE]).

“It is interesting how TransLink has used this cunning method of manipulating analysis to justify SkyTrain in corridor after corridor, and has thus succeeded in keeping its proprietary rail system expanding.”

At the time, no one could present an argument strong enough to combat what seemed to be a legitimate series of concerns on the SkyTrain proposal. The decisions of 2008 and the surrounding controversy continue to be reflected in the words of today’s writers, most recently surfacing with the announcement of the recent Evergreen Line delay and the ongoing SkyTrain versus LRT debate in Surrey.

However, when the Auditor General of British Columbia was asked to look into the Evergreen Line technology switch, the Auditor General’s finished report in 2013 concluded that while some information was missing, the switch to SkyTrain was the right decision.

The Auditor General summarized the missing information as a shortfall in explaining the following:

  • Options’ risks, costs and benefits;
  • Assumptions underpinning SkyTrain ridership;
  • Wider transit system risks and dependencies; and
  • How agencies would measure performance

In the approximately 3 years since this Audit was released and the 7 years since the decision to switch to SkyTrain, new information has been released that makes it possible to fill in all four of these gaps, as well as the other concerns raised by critics and the City of Burnaby.

In an effort to compile this new information, I performed the research myself, which included extensively looking into all business cases (2006, 2008 and 2010) and other supporting evidence (including all 61 archived pages of the original Evergreen Line LRT discussion thread on Skyscraperpage).  With the conclusion that the Evergreen Line business case was not manipulated to favour SkyTrain, I present my results below.

1. Were SkyTrain and LRT compared properly?

The first and foremost concern by the auditor general was that the SkyTrain and LRT options may not have been compared properly – as sufficient information on aspects like ridership wasn’t provided. An explanation of how the ridership estimates were conceived was not provided in the 2008 business case, but there is little reason to believe that the 2008 business case was wrong in assumptions.

The City of Burnaby’s staff report probably best summarized the issues that were raised surrounding the comparison. However, much of the research I performed has explained these perceived shortfalls:

Capital cost estimates

As the capital cost estimates for LRT increased from $970 million (2006 business case) to $1.25 billion (2008 business case) with little explanation, the City of Burnaby complained that this increase was unreasonable – especially as it brought the cost difference with SkyTrain down to a mere $150 million (12%). Light Rail advocates and critics, including Gerald Fox, complained that the cost increase was manipulated to favour SkyTrain.

It was noted in the 2006 study that the cost estimate of then was done at a 90% preliminary design stage – not a fully detailed design stage presenting a finalized cost. It thus seems conceivable that costs increased while the final alternative was being analyzed for the 2008 business case.

Recently I performed some research on the capital costs of Canadian rail transit systems. With several rapid transit and light rail systems now proposed across the country, I took the opportunity to compile an inflation-adjusted comparison of the project capital costs – adjusting each project for the amount of grade-separation (tunnelled or elevated) and using that as a guideline to compare the costs. This extensive research took me several weeks to complete as I had to manually measure most of the proposals to assess the amount of grade-separation.

See: Capital costs of Canadian rail transit systems

Unsurprisingly, I reached the conclusion that with the steepest trend in perecentage-to-cost, bored tunnel is the most expensive alignment to construct.

The Evergreen Line, no matter whether it were to be SkyTrain or Light Rail Transit, has a 2km bored tunnel as a part of its alignment through the mountainous terrain between Burquitlam and Port Moody. This accounts for about 20% of the entire route.

The Evergreen Line's 2006 estimate is marked by the "$99" at the bottom left. The 2008 estimate is the $112 above it.
(Open to enlarge) – The Evergreen Line’s 2006 estimate is marked by the “$99” at the bottom left. The 2008 estimate is the $112 above it.

My measurements indicated that the 2006 cost-per-km estimates were the lowest of the other projects. The estimate was significantly below other projects with a ~20% bored tunnel percentage, and below the average trend line that related percentage in a tunnel to rapid transit cost per km.

In other words, the 2006 cost estimates are too low and were probably incorrect.

And now that we know how much trouble it took to construct the Evergreen Line’s 2km tunnel, it’s certain that the LRT project’s final cost would have come closer to $1.25 billion. LRT tunnels need to account for pantographs and higher vehicle heights; whereas the linear motors used on our SkyTrain technology lines are more optimal for tunnels as the train is lower and closer to the ground. As a result, an LRT tunnel would have been larger and more complex and would have likely lead to additional potential problems.

Just imagine what kind of liability chaos there’d be if a sinkhole did open under a home above the tunnel route. It hasn’t happened with our SkyTrain tunnel, but it’d be more likely under a larger tunnel (and larger tunnel boring machine) needed for an LRT.

Operating costs

The operating costs rose from $12.21 million in 2006 to $15.3 million in 2008 (both measurements were in 2007 dollars). While it doesn’t seem that anyone in particular raised this as an issue, the cost increase can be explained by a difference in service frequency.

The 2006 business case’s estimate was based on a 6 minute initial operating frequency. The 2008 business case’s operating costs were based on a higher 5 minute initial operating frequency. Whereas the 2008 cost estimates are 25% higher while a 5 minute frequency is 20% higher than 6, the newer numbers seem just about right to me.

Travel times

The City of Burnaby’s assessment of travel times suggested that the SkyTrain alternative’s travel time estimates were far too high and the LRT alternative’s estimates were far too low. It provided this graphic to show the disparity:

Evergreen Line graphic
Open to enlarge

Burnaby complained that the Evergreen Line’s LRT speed estimates were lower than two existing LRT systems in Canada (Calgary and Edmonton). However, most of Calgary and Edmonton’s LRT systems are built off-street, and with gated crossings and absolute priority like railway systems. Most of the Evergreen Line as an LRT would be in the middle of streets and would have to follow the roadway speed limits (typically 50-60km/h). Naturally, this would result in slower average speeds than Calgary and Edmonton, where trains may run at 80km/h on dedicated rights-of-way.

While the SkyTrain alternative had much higher average speeds than the current system (with its average of 43km/h), the addition of Lincoln Station has added some length to the travel time to the extent that the Evegreen Line’s end-to-end travel time is now usually described as 15 minutes – an average speed of 43.6km/h.

Even then, at the end of the day these differences aren’t really dictated by the transit technology. The Evergreen Line will have the system’s longest station-less segment, which is largely in part due to the 2km tunnel between Burquitlam and Port Moody stations. The higher average speeds near here would be comparable to other long sections crossing geographical features, such as the 2.3km SkyBridge segment on the Expo Line over the Fraser River.

Maximum speed

Gerald Fox also raised an issue that the stated maximum LRT speed in the 2008 business case (60km/h) was lower than the potential speed limits that could be achieved in the off-street, 2km tunnel. The 2006 business case accounted for faster running speeds of up to 80km/h inside the tunnel.

However, the end-to-end travel time estimates in the 2008 business case were actually lower than that of the 2006 business case by 0.4 minutes.

Thus the 60km/h expression was probably meant to highlight the speed on most of the on-street sections (outside of the tunnel).

In conclusion

Based on the data I’ve collected above it doesn’t seem that SkyTrain and LRT were compared unfairly. There could’ve been better distribution of the info at hand, and some improvements in the planning process (like the addition of Lincoln Station from the beginning). However, no skewering of the numbers and manipulation to favour SkyTrain has taken place.

2. Was ridership over-estimated?

Ridership was an additional concern raised by the City of Burnaby, which complained that the ridership estimates for the SkyTrain option (at 2.1 million passengers annually/km) were too high,  and that the LRT ridership estimates were too low.

Open to enlarge
Open to enlarge

The LRT ridership estimates were said to be too low because they were lower than two existing Canadian LRT systems (40% lower than Calgary, and 9% lower than Edmonton). For the same reasons as I explained above, it’s not possible to put the Edmonton and Calgary systems in the same category as an Evergreen Line LRT. The Evergreen Line LRT is largely on-street; the Calgary and Edmonton systems are not, and tend to run on exclusive rights-of-way at speeds of 80km/h.

This leaves the high ridership estimates with the SkyTrain system. The auditor general raised an issue that the SkyTrain ridership assumptions with the Evergreen Line were made with assumptions that a completed transit network would be built by 2021 following the Provincial Transit Plan. This included SkyTrain extensions in Broadway and Surrey, neither of which will be built by 2021 based on the current situation.

Burnaby complained that at 2.10 million annual passengers per km, the estimates were higher than the existing SkyTrain system (1.60 million annual passengers per km) and thus much higher than would be realistic.

It’s important to note that the SkyTrain ridership estimate in Burnaby’s report was taken before the Canada Line to Richmond was introduced in 2009. The Canada Line’s opening broke ridership records with ridership almost immediately shooting up to its current level of 40.2 million passengers per year or over 120,000 per weekday – numbers that were well ahead of schedule even beat entire, city-wide LRT systems in ridership.

When this annual ridership is worked out per-km, the Canada Line is carrying 2.10 million annual passengers per km – the same amount that was projected for the Evergreen Line.

As costly as infrastructure like the Canada Line SkyTrain is, the investment has been proven worthy by the benefits to the tens of thousands of people using the system daily. The investment confidence that has resulted in our SkyTrain system expansions needs to be applied to the whole system.
As costly as infrastructure like the Canada Line SkyTrain is, the investment has been proven worthy by the benefits to the tens of thousands of people using the system daily.

A huge part of the reason the Canada Line was so successful was because efforts by the City of Richmond to make the elevated segment on No. 3 Road at-grade (like a light rail system) were defeated, resulting in the construction of a fully grade-separated line. The full grade-separation enabled higher trip speeds, which have been cited in rider surveys as the #1 most-liked aspect of the Canada Line system – outpacing every other favourable aspect mentioned by riders.

The Evergreen Line’s SkyTrain switch decision was largely based on favouring the faster travel-times and transferless journeys of a SkyTrain system. It’s thus conceivable that the Evergreen Line could see the same kind of ridership success that the Canada Line did.

3. Were the risks properly and thoroughly assessed?

The auditor general commented that the 2008 and 2010 business cases did not provide information on the risks that came with connecting Evergreen Line outcomes with the performance of other parts of our regional transit system. In particular, the Evergreen Line’s performance estimates did not account for the potential impacts of:

  1. the level and coverage of bus connector services on ridership;
  2. parking at the more popular Evergreen stations;
  3. changes to the West Coast Express (WCE), which provides peak commuter services for passengers who want to travel between the northeast Metro Vancouver and downtown Vancouver
  4. Evergreen services on those parts of the SkyTrain system that are near or at capacity in the commuting peak periods (for example, around Broadway station).

These concerns present significant risks and it is of my opinion that they should have been addressed.

However, accounting for these risks whenever a large transit priority is laid out in our region doesn’t seem to be common practice. The transit projects of today have continued the practice of tying performance estimates to grandiose plans for the rest of the regional transit system, like the transit vision crafted by the Regional Mayors’ Council that was defeated in the March 2015 referendum.

When the referendum went down the toilet, so too did the additional commitments to connecting bus service that would have been critical to the success of the included rapid transit projects. It’s raised concern among decision-makers such as Coquitlam Mayor Richard Stewart, for example, who raised a concern with the potential costs of increasing parking as additional bus services connecting to the Evergreen Line were rejected along with the other proposals.

Nevertheless, local governments have forged ahead in planning for these lines, despite the new risks created with the lack of a regional vision component. As I believe that there will be opportunities in the future to return to those other critical transit priorities, continuing planning is the best practice for moving these projects; it has certainly moved the Evergreen Line.

4.  How are we going to measure performance?

The last issue concerned the collection of performance data to measure performance after the line’s opening. No framework had been set in the 2008 and 2010 business cases, and the lack of such a framework would have a consequence on future transit planning.

However, the Auditor did acknowledge in his report that a framework could still be completed in time for the line’s opening. Although it remains to be said if the province has followed through on this recommendation, this issue isn’t relatively as much of a concern as the others as it has an immediate, clear solution.


So what’s the real “Evergreen Line Story”?

When the Evergreen Line was changed to a SkyTrain extension project in 2008, the switch came after an extended halt in design work and public consultation.

Like today’s rapid transit projects, the Evergreen Line was determined through a multiple-account evaluation that includes a Phase 1 (draft option comparison), Phase 2 (detailed option comparison) and a Phase 3 (finalized option comparison and detailed design). The 2006 study was finalized at the phase 2 stage, and it noted that its cost estimates were done at the 90% preliminary design stage.

After that, there was silence in the project design work.

At the time, there were plenty of issues around project funding (which can be backtracked to on the Skyscraperpage archives). I can understand delays with transit funding (still a very big issue with projects today) but the funding issue shouldn’t have delayed detailed design work on the Evergreen Line LRT project. We didn’t hear anything from planners, politicians or anyone involved regarding the project’s design until rumours of a major announcement surfaced in January 2008. The final business case that was then released in February had been completed by the province rather than TransLink.

So it honestly has me raising questions: what exactly was going on in there? Why did Evergreen Line design works come to a stop, and why didn’t the next phase of consultations take place? Perhaps the planners at TransLink realize they under-estimated the LRT costs, and had nervousy about going public with the news? Did local governments start losing confidence in the at-grade project’s business case?

There’s all these disconnects that don’t seem to make sense, and I would argue that this should have been of far greater concern than the provincial government’s decision to switch the project to SkyTrain. It’s not the province’s fault the planning department of the time had decided to cut us off for just over a year on the project’s progress. It’s almost as if the sudden switch to SkyTrain was a measure to deal with these problems.

All I do know is that in October 2007, the B.C. Finance minister came to the public with a statement that the Evergreen Line’s progress had indeed been frozen, but that it wasn’t due to the funding shortfall

“The premier did say last week that the Evergreen will be built,” Taylor said. “The funding is not holding it up. They haven’t decided on exactly the route and exactly the stops. So, we have made the commitment to financially be there when everybody’s ready to go.”

Evergreen Line not held up by funding, finance minister says – Coquitlam NOW

This almost certainly indicates that the LRT planning department had run into issues with the design, since the 2006 business case had anticipated the start of construction by September 2007.

Instead, in October 2007 the design hadn’t been finished and the planners in-charge “hadn’t decided on exactly the route and exactly the stops.”

You be the judge, but it sounds a heck of a lot like that the province managed to narrowly get us out of an Evergreen Line LRT fiasco in its decision to build SkyTrain instead.


Jaded by SkyTrain and a lack of LRT

There hasn’t been a single, grade-level Light Rail project approved in this region except for the currently proposed project in Surrey, and that’s probably what has raised the irk of some people who have been enthusiastic about the idea of at-grade rail. It’s probably why there’s a commonly-held belief that only provincial government overrides result in SkyTrain, and that at-grade Light Rail systems don’t have major shortfalls of their own that have resulted in their rejection here in Metro Vancouver so far.

At-grade rail advocates argue that the lack of at-grade rail infrastructure in this region really caused us to lose out on transit benefits (i.e. we could have built a bigger transit network!) but at this point that’s entirely debatable.

I think part of this is because the benefits of SkyTrain (and how we’ve built it) don’t seem to be that clear to decision-makers, planners and transit enthusiasts in our region.

Despite the constant use of grade-separation and SkyTrain technology, Metro Vancouver’s SkyTrain network expanded at a faster pace than any other system in Canada. Vancouver’s rapid transit growth has lead Canadian cities – and when the Evergreen Line opens to the public next year, we’ll have the longest rapid transit system in Canada spanning nearly 80km – and the longest driverless transit network in the world. The lower operating costs of driverless trains make it possible to keep expanding our transit network without bankrupting our operating budget on the cost of drivers.

SkyTrain also has the highest ridership of any rapid transit system in North America that isn’t classified as “heavy” rail. At nearly 9,000 boarding passengers per kilometre, SkyTrain outperforms every single at-grade rail system in Canada and the U.S.

SkyTrain ridership/km vs. other transit systems

Data is from the American Public Transit Association (Q3 2014) unless stated

City System name (type) Weekday daily boardings Daily boardings/mile
Vancouver SkyTrain (driverless) 377,900 8,870
Calgary C-Train (LRT) 310,700 8,510
Boston MBTA light rail (LRT) 214,500 8,250
Edmonton Light Rail Transit (LRT) 98,144* 7,550
Toronto Streetcar (on-street) 281,900 5,525
San Francisco Muni Metro (LRT) 145,500 4,076
Houston METRORail (LRT) 45,700 3,571
Newark Newark/Hudson Bergen LRT 72,939** 3,143
Minneapolis METRO Light Rail (LRT) 64,500 2,938
Los Angeles Metro Rail (LRT) 203,400 2,892
Seattle Link Light Rail (LRT) 40,300 2,330
Portland MAX, Streetcar (LRT) 113,900 2,330
San Diego Trolley (LRT) 124,100 2,320
Phoenix Valley Metro (LRT) 41,200 2,060

* Q3 numbers were not reported. Data from Edmonton Transit, collected during the same period, used instead.
** Q3 numbers were not reported. NJ Transit’s own FY2014 data is used in place (the same number is reported in APTA’s Q4 ridership report).


On top of everything, SkyTrain has made us one of the most successful metropolitan areas in transit ridership with an annual ridership per capita that is 3rd highest on this continent (beat only by New York City and Greater Toronto)

Region Population Annual Ridership
(thousands)
Annual Ridership
(per capita)
New York City 19,831,858 3,893,854 196
Greater Toronto 5,583,064 1,003,230 180
Metro Vancouver 2,313,328 363,163 157
Calgary 1,120,225 157,325 140
Montreal 3,824,221 433,710 113
Boston 4,640,802 399,594 86
Washington, DC 5,860,342 456,915 78
San Francisco Bay 6,349,948 476,219 75
Chicago 9,522,434 658,203 69
Philadelphia 6,018,800 336,981 56
Los Angeles 13,052,921 620,903 48
Seattle/Puget Sound Region 3,807,148 175,215 46

Data above from South Fraser Blog

Now that I’ve finished with my thoughts, I’d like to see anyone try to claim that decisions resulting in SkyTrain projects over LRT are solely a result of senior-government overrides.

…or that anyone’s manipulating data to favour SkyTrain in rapid transit studies. Because that’s simply not true.


Featured: Evergreen Line construction image posted by nname on SkyscraperPage

Rapid bus, SkyTrain best option for Langley

So I thought I’d put up a newsletter that the Langley Times published today, along with some added sources/notes.

For anyone that’s curious, I intend to be doing some more blogging on the BCER Interurban very shortly.

LETTERS TO THE EDITOR – Langley Times

Rapid bus, SkyTrain connection still Langley’s best option

Editor: Re: LRT announcement ignores less costly interurban option (The Times, Oct. 2)

We should welcome good transit ideas here in Langley, but there’s a reason that TramTrain isn’t one of them.

TramTrain was possible in Karlsruhe because it’s surrounded by numerous electrified regional railways. We don’t actually have that here in Vancouver; and while the BCER Interurban may seem like a tempting choice, it ran three times a day [1] and wasn’t built to service today’s cities [2].

When the province and TransLink conducted the Surrey Rapid Transit Study, the Interurban was denied because it would cost millions to retrofit yet still fall short on providing useful connections and service frequency [3]. In other words, it would be a giant waste of money.

What we do have are numerous fast highways on which we could operate inexpensive rapid buses. One of those, the Trans-Canada, now has the Fraser Valley Express (FVX) service from Carvolth Exchange to Chilliwack. This service is now providing the alternative that valley commuters asked for — but when it came time to consult locals about the FVX, Rail for the Valley did not participate [4].

That’s because Rail for the Valley’s TramTrain and LRT advocacy doesn’t come from a genuine desire to make transit better — but rather an opposition to extending SkyTrain to Langley, even though it will do the most for transit commuters.

Our SkyTrain system boasts a ridership that is higher than any LRT system in Canada and the US. That’s why over 50 cities worldwide have followed our lead by successfully employing ALRT-style driverless metros [5][6].

As an extension of an existing system, SkyTrain would have the lowest addition in annual operating costs [7]. Without transfers, commuters starting at Langley Centre Station could reach Waterfront Station within 60 minutes [8]. That’s the kind of travel time improvement that’ll get people really wanting to use public transit, and generate the fare revenue to recoup costs.

I’m all for good transit ideas; but when it comes to what will objectively serve Surrey and Langley best, rapid buses and SkyTrain are the way to go.

Daryl Dela Cruz,
Campaign manager
skytrainforsurrey.org

Footnotes

  1. BCER article in Canadian Rail No. 534 issued Jan-Feb 2010 with the writer and 4-time BCER book author, Henry Ewert, stating himself that Fraser Valley interurban trains ran 3 times per day (Mirrored on Exporail.org)
  2. An earlier technical assessment found numerous technical/construct-ability issues with interurban rail. Mirrored [HERE]
  3. Surrey Rapid Transit Study: “Compared to other alternatives, lower population and employment densities along much of the corridor and a less direct connection to Surrey City Centre would result in lower transportation benefits.” See last page of Phase II Information Boards
  4. The BC Transit Public Engagement Reports for the Fraser Valley Express, Abbotsford-Mission (CFVT) Transit Future Plan and the Abbotsford-Mission (CFVT) Efficiency Review indicate that there has been no participation by members of Rail for the Valley and other associated initiatives, with no comments on potential Interurban Rail service.
  5. The Automated Metro Observatory regularly reports on the worldwide progress of driverless transit systems. There is an expectation that the amount of fully driver-less metro systems will triple by the year 2025.
  6. In addition, numerous cities worldwide have implemented the same linear induction motor propulsion technology used by SkyTrain. A full list is on this blog: List of Linear Induction Motor rapid transit systems
  7. Funding Still Missing for LRT Operating Costs news release – SkyTrain for Surrey
  8. Based on Surrey Rapid Transit Study travel time estimates.

Return to blogging: Life after 1 year in Japan

Pictured above: A Compass card next to my personalized SUICA, the IC card used on Tokyo’s transit network.

I neglected to make a formal announcement on this blog before I left, but I’m sure many of you were following me this past year for my journeys in one of the most transit-developed countries in the world. My opportunity to live in this country came with a scholarship study program that I was admitted to last year, and brought with it a form of excitement in terms of not only getting to lived in a country I had dreamed of visiting for personal interest reasons, as well as further my personal ambitions – but to see what I could take back from a country that has developed what may perhaps be the world’s best, most comprehensive transportation network.

As a student without a lot of money (apart from my scholarship money) there wasn’t really a lot to expect, and I didn’t think I would make it much further than destinations near my hometown in Nagasaki prefecture – but I was determined to make it more than just a matter of staying in one city and picking up another language. Fortunately, I was proved wrong and it was thanks to the country’s excellent transportation system.

With the 3rd biggest domestic flight market in the world, the expenses of domestic air travel had dropped to the point where you could fly to other cities with just a few hours of earnings on minimum wage – this materialized for me in January when I was able to book no less than 7 individual flights with an airline for under $200 CAD. Train operators offered deals like the JR Seishun 18 Pass and Kintetsu Rail Pass that helped me cut down on the costs of intercity travel. All in all I was able to amass more than 10 weeks of travel experience, reaching all of the country’s biggest cities, and numerous areas in-between. I did this all with only the resources I had in my pocket and no drivers’ license, no car and no need for taxis to fill the gaps.

For a country with one of the world’s most prominent and largest automobile industries in the world, car usage in Japan is surprisingly low. The Japanese have lived with a built-in culture of utilizing transit options, boosted heavily by the small size and relative density enabling the inexpensive construction of nationwide train networks.

In my view, after a year of experiencing the country, Japan’s transportation excellence primarily comes from its advantageously small size, and its commitment to keeping transit networks around.  There are few areas in North America with the same kind of supporting density as can be found throughout this East Asian country, and you won’t be surprised to find that these areas also have well-built inter-city and intra-city train and transit systems. Many of the rapid transit train lines you’ll find in cities have been around for anywhere between 50 and 100 years, built in advance of developments with developments and communities orienting themselves around transit lines. Stations are meeting places, and are often community hubs with large pick-up and drop-off places and a large congregation of businesses. Often these businesses are built into the station itself.

Plaza 88's shopping district is directly integrated with SkyTrain's New Wetminster Station, and reminds me of a small-sized Japanese community hub. Photo: Foodology.ca
In Metro Vancouver, the Plaza 88 shopping district is directly integrated with SkyTrain’s New Wetminster Station, reminiscent of a small-sized Japanese community hub. Photo: Foodology.ca

We have a few examples of that here in Vancouver, the most prominent being the newly built Plaza 88 and Shops at New West Station, and I would really like to see more of them. Japanese cities have mastered the maximization of the accessibility of a train station. In large cities like Tokyo, major train stations are built under or adjacent to massive, 10-story shopping malls with every single service you can find. Businesses, including shops and restaurants, can set up their shops/restaurants at fewer locations than you would expect, because it’s fast and easy to get there from anywhere in the city. Many smaller businesses set up shop only at or near the busiest train stations, yet have no problem reaching and catering to a large amount of people from faraway places. The versatility, flexibility and cost-savings in having transit has proven to be a strong driver in Japan’s consumer economy.

Akihabara, which is famous for being Tokyo's pop culture district, is located at the intersection of two major train lines. The station itself has several stories of shops steps away from train platforms - and in the surrounding area, stores that cater to anime, manga and pop-culture fans don't tend to exist anywhere other than Akihabara because they don't need to. Akihabara is a community that is truly made possible by transit. (Taken by myself on Aug 4, 2015)
Akihabara, which is famous for being Tokyo’s pop culture district, is located at the intersection of two major train lines. The station itself has several stories of shops steps away from train platforms – and in the surrounding area, stores that cater to anime, manga and pop-culture fans don’t tend to exist anywhere other than Akihabara because they don’t need to. Akihabara and its culture is made possible by high-quality transit. (Taken by myself on Aug 4, 2015)

Japan is famous for not only its trains and what its trains have made possible, but also for its railway innovations and pioneers. The “Shinkansen” or “bullet train” was the world’s first high speed rail system between Tokyo and Osaka, which is now the busiest line in the country and is in the process of being replaced by a 600km/h maglev.

Big cities in Japan have extensive transit systems supported by trains that run skip-stop “express” and local services on the same track, carefully timed to the second, with coordinated transfers between those services to maximize passenger flow and minimize travel time.

Osaka's Nagahori-Tsurumi-Ryokuchi line was the first of numerous linear motor train lines.
Osaka’s Nagahori-Tsurumi-Ryokuchi line was the first of numerous linear motor train lines. During my Osaka trips I usually stayed with family adjacent to a station on this particular line.

In addition to pioneering the systems that have been popularized in other countries, Japanese planners are keen to pay attention to trends from abroad. When our SkyTrain system in Vancouver opened in 1986, it was one of the most innovative transit systems in the world. Many Japanese cities have borrowed the same “SkyTrain technology” we use, best characterized by the linear motor rail in the centre of the track, in high-capacity, big-city subway systems – taking advantage of the tighter radius curves and smaller tunnels to save trillions of Yen in public transit projects.

See also: List of Linear Induction Motor rapid transit systems

Japanese cities have used linear motor propulsion on nearly every subway line built since the 1990s – all of which I have visited during my 1 year stay. In many of the cities the trains are of a newer-generation than the ones used here in SkyTrain. Fukuoka’s Nanakuma Lines trains are not only well-built and modern, but surprisingly quiet going through tunnels.

The latest system, the “Tozai Line” in Sendai, will be opening this December, and will revitalize transit and tourism in a city which in my experience was comparatively lacklustre with its supporting buses.

All in all I enjoyed fulfilling my objectives, especially in transit research. Returning to Canada was a challenge in my realization that many of the Japanese lifestyle things I enjoyed cannot be found in Canada. There’s a lot to say about my time in Japan and how I viewed particular aspects in transit planning topics, but that’s a discussion I’ll be saving for later. I look forward to returning to active blogging on both Metro Vancouver and Japan topics.

Photo of myself at Osaka's Shinsekai district. Taken Jan 2015.
Photo of myself at Shinsekai, one of the many pedestrian-only districts in Osaka; in the background is the famous Tsutentaku Tower. Taken Jan 2015.

New TransLink CEO salary is lowest in Canada

The next CEO of TransLink will earn an annual salary of almost $320,000, plus a generous benefits and bonus package.

(CBC: TransLink CEO job posting lists massive salary)

The new salary offer for TransLink’s next CEO is out and as expected, members of the public are complaining non-stop about a number that is being described by media as “massive” and “fat” as it is north of $300,000.

Earlier this year I wrote a blog post suggesting TransLink’s executive pay should be looked at in a different way, a post that was so well-received that it engaged the entire region and sent the page-view counts on this blog skyrocketing. When transportation professionals with the Victoria Transport Policy Institute quoted this blog post in a major study of theirs, I knew I had hit something right on the nail.

Now that the new CEO salary figures are out and everyone is once again relentlessly complaining, I decided to run the numbers again to see where TransLink is now against Canada’s major cities. The base salary is now in line with that of Toronto’s TTC and Montreal’s STM, but not when a bonus of up to 30% is considered:

“Greater Ottawa” in this chart counts both OC Transpo and Gatineau-Hull’s STO

But, when you consider all of the transit agencies servicing a metro area, the executive payment in this region is comparatively minuscule:

The “all” in the above chart represents all transit authorities servicing a given area. As an example, in addition to Toronto being serviced by the TTC, Mississauga is managed by Mi-Way; York Region is managed by York Regional Transit; GO Transit operates regional commuter rail and a TransLink-like regional authority called “MetroLinx” is required to tie them all together. Each of these operators has their own executives and CEOs.

Our region has 1 transit operator with 1 CEO; others have many different operators and multiple CEOs. It’s a concept that’s so simple and easy to understand, and it is absolutely crucial that we familiarize ourselves with it.

When TransLink’s context of a single, region-wide transportation authority is considered against what the region-wide setup is in Canada’s other metropolitan areas, Metro Vancouver actually has the lowest per-capita CEO salary of any major city in Canada. Even if our CEO receives a full 30% bonus.

We now pay about 17.5 cents per capita if the CEO earns a 30% bonus; whereas the people of greater Toronto pay between 1 and 12.5 more cents more for their executives (depending on what you would include as greater Toronto’s transit operators), and the people of greater Montreal each pay between 6 and 12.5 cents more.

We will also be paying our new CEO less for every revenue hour of transit service they manage, even if the CEO receives a full 30% bonus:

Top in-charge earnings per revenue hour of transit service 2015 NEW

I compiled the data for all to review here (LINK to this spreadsheet):

Outlook

Nickels for everybody! Yaaayy!
Nickels for everybody! Yaaayy!

The revised, lowered CEO salary will put a maximum of 5 cents back into people’s pockets and would not even pay for buying a single bus. Despite the relatively minimal benefits to Metro Vancouver’s citizens, attracting a new CEO will be a more difficult task with a lower offer, and TransLink should be commended considerably if and when they are able to do so.

The response a TransLink spokesperson offered in Jeff Nagel’s recent report for the Surrey Leader pretty much sums up why TransLink can’t be considered a “transit operator” in the usual vein:

“It needs to be a competitive salary,” Moore said, adding the challenge with comparing TransLink to other transit authorities is there is nothing similar in North America.

“The No side in the plebiscite wanted to compare the CEO of TransLink to one of nine CEOs in Seattle or one of eight CEOs in Toronto,” Moore said, referring to areas where multiple separate agencies do the work of TransLink. “Nobody else has an integrated rail-bus-road infrastructure.”

Pay offer for the next TransLink CEO under fire – Jeff Nagel, Surrey Leader

But, I don’t think most people are ready to understand this – it’s probably easier to think that our transit operator is a transit operator like any other, regardless of the serious differences in the way we are organized. It’s clear that much of the “NO” vote in the recent referendum was motivated by an unfavourable view of executive salaries, which were not being looked at in a proper context.

If anything, this should have an effect on how the provincial government interprets the “NO” vote altogether. At this point, the only way that the misinformation around executive salaries in this region can be offset is for someone to take leadership and recognize the serious flaws in how people have been informed on this matter.

SEE ALSO: Referendum Myths – TransLink and Executive Salary

Author’s note: This post was updated on July 27, 2015 to account for newly released numbers and other issues pointed out with the original post.

Surrey’s LRT “Plan B” doesn’t work

The media has done plenty of reporting on Mayor Linda Hepner’s desire to pursue a Canada Line P3 model to fund proposed Light Rail in Surrey, due the recent NO vote in the transit plebiscite.

Before decisions are taken from examples in this manner, I think it’s important to also take in the context of that example. In some of my most popular posts on this blog I’ve noted how a lack of context has done so much to skewer opinions and affect decisions in our region.

The Canada Line P3 was a successful P3 because its ridership and fare revenue exceeded projections.

The Canada Line’s P3 system works like this: The private partner signs on to build the line and operate for 30 years, and makes a capital investment to reduce the public funding burden. This capital investment in the project is returned as a profit through the performance payments made during operation.

If fare revenue from ridership meets or exceeds the costs, financing proceeds as planned and excess operating revenue is returned to the taxpayer. If the fare revenue does not exceed the costs, that represents significant additional costs to taxpayers to subsidize operations.

Thankfully, the Canada Line is exceeding its ridership projections, as a result of carefully considred design choices made during the decision-making process.

But, this is where the proposed ground-level Light Rail system for Surrey, which I have been a heavy critic of through the SkyTrain for Surrey website, runs into a very major problem.

The Surrey LRT system will not recover its operating costs.

It will run into an operating deficit of millions per year from opening day and it will struggle to recover these costs if it manages to do so at all.

Financial details for Surrey Rapid Transit, reported in the TransLink/MOTI joint study
Financial details for Surrey Rapid Transit, reported in the TransLink/MOTI joint study, on page 369

LRT’s operating deficit subsidy of $22 million ($2010) per year on opening day, growing to $28 million by 2041,  is on top of the $60 million per year for capital financing that Mayor Linda Hepner declared to the Globe and Mail. On top of all of these costs, additional costs would need to be added to the performance payments to the private operator, so that the partner can receive its return on investment.

When all inflation is accounted for, the cost of financing the P3 LRT will be nearly $100 million annually on opening day. The city will obviously need to find a way to come up with this money, and I take it that more than a few really big axes will be making their way to other city services as a result.

Plan Misses the Mark

Perhaps a part of the reason for this shortfall is because the City wants to replicate SkyTrain frequencies by running LRT trains at a 5-minute frequency, increasing to a 3-minute frequency after approximately 20 years. This frequency is not done anywhere else with driver-operated LRT systems in North America. The tendency is to run at 5-10 minute frequencies during peak hours only, reducing to 15 minute frequencies during off-peak hours and weekends.

Chart on SkyTrain vs a selection of LRT system frequencies. Made for a previous write-up on the Vancity Buzz.

The higher frequencies do not necessarily solve the many issues with an LRT system and the challenges such a system in Surrey will face. Of the $27 million in annual costs required to operate Surrey’s full LRT network, only $5 million is expected to be recovered through additional fare revenues. Cut the operating frequencies in half (resulting in significantly worse service), and there would still be a major operating deficit.

This is because many of the riders on the future LRT system will be people who already pay their fares on existing buses. They are the transit-dependent people of the city, not the people who may have the choice to continue to drive if that is what continues to serve them better.

A previous survey of Canada Line riders revealed that trip speed is the most liked aspect of the line. Street-level LRT’s limitation to slower street-level speeds will certainly create challenges in being competitive.

Ridership deficits

Surrey’s LRT will suffer these operating deficits because as a slower and less reliable grade-level system, it will not attract as many passengers as an integrated, grade-separated extension of SkyTrain. In addition, LRT will be unlike our driver-less SkyTrain system in that each train requires a driver, meaning it is more expensive to operate and will be subject to design limitations that will have a major effect on its viability.

Surrey’s LRT will carry only 2970 riders/km on opening day.4 The Canada Line, which carries 122,000 daily boardings2, required 100,000 (5200 passenger boardings per km) to cover its annual operating costs.3

As costly as infrastructure like the Canada Line SkyTrain is, the investment has been proven worthy by the benefits to the tens of thousands of people using the system daily. The investment confidence that has resulted in our SkyTrain system expansions needs to be applied to the whole system.
The driverless, grade-separated Canada Line hit its 2013 ridership projections more than 3 years ahead of schedule in 2010.

SkyTrain is a viable option

If SkyTrain is extended down Fraser Hwy. to Langley, it will carry 5443 riders per km on opening day.This is comparable to SkyTrain’s present system-wide average of 5693 riders per km.5

SkyTrain would offer faster, safer, and more reliable service – which would attract more ridership, generate more fare revenue and as a result cost only $6 million per year to subsidize operations.6 This would then be eliminated entirely with the concurrent optimization of local bus routes.7

Without an operating subsidy, SkyTrain would have a far better business case for a Canada Line-style P3 model. In any case, since the operations and maintenance component can be handled by the existing BCRTC, a newly created operating entity is not required. This will save taxpayers even more money as the P3 contract for SkyTrain would be a simpler Design-Build-Finance (DBF) model.

At the end of the day, I think there’s one particularly more significant number that exemplifies SkyTrain’s viability in Surrey over a ground-level Light Rail system.

SkyTrain would have a positive benefit/cost ratio of 1.45:1. The proposed LRT has a poor benefit/cost ratio of just 0.69:1.

A SkyTrain extension is clearly the only viable option for rail rapid transit in Surrey, and decision-makers in the city and elsewhere need to start taking a look at the hard facts.

Featured image: The SkyBridge, with the New Westminster Waterfront in the background. From the
Among other benefits, a SkyTrain extension will treat South-of-Fraser riders to a direct, transfer-less connection with the existing Expo Line to New Westminster and Vancouver.

Footnotes

According to data from the 2012 TransLink/MOTI joint study
Surrey Rapid Transit Alternatives Analysis (SRTAA) Phase 2 Evaluation
Available at [LINK HERE]

  1. SRTAA PAGE 369; Undiscounted value; measured over 30 years, with costs increasing to 2041 on year 2041
  2. ProTransBC (operator) website – http://www.protransbc.com/service-performance/
  3. TransLink media release – Addressing Canada Line capacity questions
  4. See SRTAA PAGE 301 for ridership estimates (divided by track lengths listed on SRTAA P. 347)
  5. Based on APTA ridership data from Q4 2014
  6. See attached graphic, or SRTAA PAGE 369
  7. Suggested on SRTAA PAGE 536: “For RRT 1A, savings of $170 million”

Where YES vote % was lower, more people drive (Referendum Results)

So in the wake of the NO VOTE in the Metro Vancouver Transit & Transportation Plebiscite,

Here’s an interesting collaboration I did with Kyle of 257vancouver over a Twitter conversation. After he posted a few charts with preliminary data, I asked him plot the below chart showing how the referendum YES vote correlated with the commute mode-shares for public transit and driving:

Both sets of data compare %Yes Vote. SOURCE: Twitter @257van

Notice on how the top set of grey dots, there are more dots up where the driving mode share percentage is higher, closer to the left where the yes vote percentage was lower. The opposite is generally true for those who rely on public transit.

To me this is a rather unsurprising but a very important trend to pay attention to. With at least a part of the “NO” vote outcome coming not necessarily as a result of choice of funding method or a distrust of TransLink, but as a result of any opposition to the details of the Mayors’ Council’s transit plan, I think this really says something about how we need to be looking to plan big-ticket transit expansion here in Metro Vancouver. That is, at least, if we want it to get more support for it from the public.

(HINT: a faster SkyTrain, over the proposed ground-level LRT in Surrey that barely improves transit travel times, would certainly help).

An overcrowded platform at VCC-Clark SkyTrain station. SkyTrain service cuts during all off-peak hours were among some of the "efficiency" recommendations in the recent TransLink audits.
In the meantime… welcome to the world of even more crowded buses, even more SkyTrain breakdowns, and basically even more commute-related stress whoever you are and however you go.